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Editorial

A news feature published in Nature Magazine on
March 2021 (https://www.nature.com/articles/
d41586-021-00530-0) discussed how OpenAI’s lat-
est natural language model, GPT-3 [6], can be used
to automatically generate coherent texts in a va-
riety of contexts. Moreover, the article emphasises
that advanced AI models, such as GPT-3, often do
not understand what they generate, highlighting the
risks of misuse that such technologies could present.

This potential for abuse was highlighted when a
university student leveraged GPT-3 to generate fake
blog posts using just a title and a brief introduction
as the input (https://www.technologyreview.
com/2020/08/14/1006780/ai-gpt-3-fake-blog-
reached-top-of-hacker-news/). These fake posts
were so successful that few suspected they had been
generated by an AI engine, with one post reaching
the #1 spot on the website Hacker News. Whilst
this ended up being a relatively benign prank, the
ease with which it was conducted has raised con-
cerns as to what could happen if this was used for
more dangerous applications, such as the generation
of disinformation or spam. As humans become less
able to differentiate between machine-generated and
human-created texts, the potential for the weapon-
isation of powerful text generators as a vector for
mass digital data deception (DDD) is, in turn, be-
coming a serious concern.

In this issue, we will cover text-based fake data
at least partly generated by automated algorithms.
While there has not been a universally accepted def-
inition of deepfake images, videos and audio/speech
data, the definition of text-based fake data (deep-
fakes and non-deep fakes) is even more ambiguous.
In Section 1, we will discuss how we see the definition
and how we decided to define the scope of this issue.
In a nutshell, we will consider different types of AI-
based fake text generation, including those based on
deep learning and more traditional machine learning
methods.

Text-based fake data is based on different meth-
ods for natural language generation (NLG), a key
sub-area in natural language processing (NLP) and
computational linguistics (CL). Considering the
breadth and depth needed to provide a sufficiently
useful coverage of NLG, we will use three issues to
cover different aspects of this topic. In this issue we
will cover general concepts, propose a taxonomy of

NLG-related research, and cover three fundamental
areas of the taxonomy: NLG methods, evaluation
of NLG methods, and the underlying AI techniques
that are used. In the next issue, we will focus on dif-
ferent applications and sub-topics of NLG relevant
to DDD. In the third issue, we will look at detec-
tion of AI-generated texts, attacks on NLG methods
and detectors, as well as the current challenges and
open questions facing NLG and the detection of AI-
generated texts.

To source the articles necessary to derive our
taxonomy we opted for a venue-driven approach,
selecting a number of relevant review and survey-
like papers on AI-based NLG. This approach allowed
for the selection of a focused set of relevant papers
suitable for this newsletter, whilst still providing a
strong overview of the field as a whole.

To this end, we looked at research papers pub-
lished since 2019 at a number of venues known
to have published NLG-related research, including
those listed in the ACL (Association for Compu-
tational Linguistics) Anthology, all conferences and
workshops of ACL’s Special Interest Group on Natu-
ral Language Generation (SIGGEN), four additional
NLG-related conferences not indexed by the ACL
Anthology (IALP, CICLing, PACLING, TSD), four
major journals related to NLG or for publishing
survey papers (IEEE/ACM Transactions on Audio,
Speech, and Language Processing, ACM Transac-
tions on Asian and Low-Resource Language Infor-
mation Processing, ACM Computing Surveys, IEEE
Communications Tutorials & Surveys, and IEEE Ac-
cess), arXiv.org, and 14 NLG-related Chinese jour-
nals.

For some sources, we first used a search query
to identify all surveys, systematisation of knowledge
(SoK) papers, systematic reviews, taxonomies, on-
tologies and general reviews, and then screened all
returned papers manually to identify NLG-related
papers. For other sources, we screened all papers
published in the time period (2019-2021) to iden-
tify NLG-related survey papers. In addition, we
also manually inspected all SoK papers indexed by
DBLP. All initially identified papers were further in-
spected and encoded for exclusion or inclusion in the
three issues planned for the topic on text-based fake
data. All finally selected papers were, or will be, used
to derive the taxonomy presented in Section 1, and
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the contents of this and the next two issues.
We hope you enjoy reading this issue. Feedback

is always welcome, and should be directed to ddd-
newsletter@kent.ac.uk.
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List of Acronyms

• ACL: Association for Computational Linguis-
tics

• AI: Artificial Intelligence

• BERT: Bidirectional Encoder Representations
from Transformers

• BLEU: Bilingual Evaluation Understudy

• CIDEr: Consensus-based Image Description
Evaluation

• CL: Computational Linguistics

• CNN: Convolutional Neural Network

• CTRL: Conditional Transformer Language
Model

• DL: Deep Learning

• DNN: Deep Neural Network

• GAN: Generative Adversarial Network

• GNN: Graph Neural Network

• GPT: Generative Pre-trained Transformer

• GRU: Gated Recurrent Unit

• LSTM: Long Short-Term Memory

• MASS: Masked Sequence to Sequence Pre-
training for Language Generation

• METEOR: Metric for Evaluation for Transla-
tion with Explicit Ordering

• ML: Machine Learning

• MLE: Maximum Likelihood Estimation

• MNMT: Multilingual Neural Machine Trans-
lation

• NLG: Natural Language Generation/Genera-
tor

• NLP: Natural Language Processing

• NN: Neural Networks

• PLM: Pre-trained Language Model

• PPLM: Plug-and-Play Language Model

• RL: Reinforcement Learning

• RNN: Recurrent Neural Network

• ROUGE: Recall-Oriented Understudy for
Gisted Evaluation

• SoK: Systematisation of Knowledge

• SVM: Support Vector Machine

• T5: Text-To-Text Transfer Transformer

• TG: Text Generation/Generator

• UniLM: Unified pre-trained Language Model
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1. Definitions and Scope

1.1. From NLG to Text-based Fake Data

Natural language generation (NLG) refers to the
process of developing software-based models and sys-
tems aimed at creating fluent, human-readable text
from a given set of inputs (e.g., text-based datasets,
images, prompts) [36]. Given the value in being able
to create new texts with limited human assistance,
NLG can thus be applied to a wide-range of tasks
related to natural language processing (NLP). This
range of NLG tasks includes story and poem gener-
ation, interactive tasks such as the creation of chat-
bots and Q&A systems, and the translation of texts
from one language to the other [7]. It is worth not-
ing that we consider NLG a distinct subclass of text
generation (TG), which includes other, non-natural
language generation such as the automatic creation
of programming source code (as seen in OpenAI’s
recent release of the Codex code generator [9]). In
this newsletter, we focus on NLG research.

With the rise in deep learning based architec-
tures that are better equipped for handling sequen-
tial data, such as recurrent neural networks (RNNs)
and Transformers, improvements in NLG have come
rapidly in the past few years [8]. These improvements
have been particularly notable with the development
of powerful language models, typically built around a
Transformer architecture, that have been pre-trained
on massive datasets to conduct a generic text predic-
tion task (e.g., GPT-2/3, T5, XLNet) [7]. Leverag-
ing these pre-trained models, state-of-the-art perfor-
mances in NLG have been achieved simply by fine-
tuning these models with (relatively) small amounts
of data specific to a desired task [48].

As NLG models become more powerful, it is be-
coming ever harder for humans to distinguish be-
tween AI-generated texts and texts written by hu-
mans [27]. With these rapid improvements in NLG
come concerns over the capacity for generation mod-
els to be leveraged to produce fake or otherwise de-
ceptive texts. This could result in a variety of po-
tentially dangerous uses, including the generation of
fake news [52] or extremist/radicalising texts [27],
and the creation of highly convincing spear-phishing
emails [50]. Beyond these more commonly cited
(mis)-use cases, however, it is worth noting that the
potential capacity for NLG models to fool humans
into believing that the texts they are reading are

human-created means that all NLG tasks hold the
potential for deception and misuse.

Given this broad capacity for deception, we opt
to take a wide scope in our approach to fully cover
the topic of NLG. This will allow us to present a
complete consideration of the myriad ways in which
various NLG systems, applied to various tasks, can
be adapted for deception.

1.2. A Taxonomy

Based on the NLG-related survey papers identi-
fied during the screening process, we derived a tax-
onomy covering all of the important topics and con-
cepts relevant to NLG. We consider two different
types of nodes: classes and attributes. An attribute
has two or more values, some of which refer to other
nodes. A sub-class is normally defined by one or more
attributes of a super-class, in other words, a super-
class can be split into multiple sub-classes according
to different values of one attribute or different value-
combinations of multiple attributes.

It is worth noting that this taxonomy is currently
work in progress, and further refinement will be con-
ducted over the following issues of this newsletter.
The complete and finalised full taxonomy will be in-
cluded in NL-2022-5, alongside a discussion of the
changes and refinements that have been made.

Currently, we have defined the following high-
level concepts that compose the first level of our
NLG taxonomy:

NLG Methods: This concept encapsulates the
methodological approach taken in order to construct
an NLG system. In turn, this concept includes the
form of input utilised to generate text, the specific
task that the NLG system is directed towards, the
training approach taken, and the training data used
to build NLG models. We discuss this concept’s sub-
tree in detail in Section 2.

Evaluation of NLG Methods: This concept
refers to the process by which an NLG system is eval-
uated to measure the quality of its outputs and/or its
performance towards a desired task. This sub-tree,
in turn, includes the choice of evaluator, the interac-
tivity and internality of the evaluation approach, the
metrics used to measure generated text quality, and
the methodology that follows from these classes. A
complete discussion of the NLG evaluation sub-tree
is presented in Section 3.
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AI Techniques: AI techniques refers to the form
of machine-learning technique(s) or model(s) that
is/are leveraged for NLG. There exist a wide range of
AI techniques, including neural network (NN) based
approaches such as RNNs and their derivatives (e.g.,
LSTMs and GRUs), and pre-trained Transformer-
based models like GPT-2/3, XLNet, and CTRL. Fur-
ther discussion of the AI techniques sub-tree is pre-
sented in Section 4.

Applications: The Applications concept en-
compasses the array of uses to which NLG systems
can be applied. As mentioned earlier, NLG can be
applied widely, finding uses in the creation of chat-
bots and other dialogue systems, creative generation
(including story and poem creation), as well as be-
ing highly valuable in developing language transla-
tion and image-captioning systems. A dedicated ex-
amination of NLG applications will be provided in
NL-2022-4.

Attacks: In terms of NLG, attacks can take two
forms: attacks on the system and attacks by the sys-
tem. The former thus refers to malicious attempts to
cause undesired or unintended behaviours of a given
NLG system or to otherwise avoid any detection sys-
tems they may have implemented. Attacks by the
system, instead, refers to the usage of NLG systems
themselves for malicious purposes, such as generat-
ing hate-speech or fake news. An in-depth look at
NLG attacks will be provided in NL-2022-5.

Detection: Detection encapsulates approaches
aimed at identifying AI-generated texts produced by
an NLG system – a crucial task given fears of NLG
outputs being disguised as human-created texts. De-

tection also includes approaches to identify potential
attacks against NLG systems or those launched by
an NLG system. More details on detection as it re-
lates to NLG will be provided in NL-2022-5.

Challenges & Open Questions: Finally, this
concept covers the future of NLG, examining the is-
sues facing current and future NLG approaches and
the open questions that need answering to fix these.
Beyond issues of NLG-based attacks and detection,
this encapsulates other problems with current NLG
approaches, such as fears of model bias produced by
poorly curated datasets, issues of privacy, and issues
with current approaches to generating non-English
texts [4]. Further discussion of these challenges and
open questions will be included in NL-2022-5.

In this issue, we examine the key concepts of our
taxonomy related to the development and evaluation
of NLG systems via a review of survey papers dedi-
cated to NLG. In Section 2, we discuss the commonly
used methods by which NLG systems are developed.
In Section 3, we discuss the key aspects in designing
evaluation methods for NLG systems, highlighting
the current inadequacies and limitations of existing
approaches. Finally, we end with Section 4, in which
we provide a broad discussion of the various exist-
ing AI techniques currently used for NLG purposes.
Through this, we hope to provide a good overview
of the necessary approaches, techniques, and evalua-
tive procedures currently used for NLG. The follow-
ing two issues of this newsletter will then build on
this foundation to further explore NLG applications,
detection, attacks, challenges and open questions.
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2. NLG Methods

2.1. Introduction

NLG “aims to produce plausible and readable
text in human language from input data” [36]. In
turn, there exist a variety of popular NLG tasks
(e.g., story generation, question answering) that can
be adapted for a number of different applications
(e.g., creative writing, conversation). This section
contains a meta-review of a set of four survey ar-
ticles [8, 36, 46, 67] and some supporting additional
publications, and focuses on different aspects of NLG
methods including the types of input, typical tasks,
underlying techniques and training approaches used
in the development of NLG models.

2.2. NLG Input

NLG tasks can be uncontrolled (also called un-
conditional) or controlled (also called conditional).
In the former case, the text is generated without
constraints, typically based on a random noise vec-
tor [36] or no input. For the latter case – i.e., con-
trolled NLG tasks – a variety of inputs can be used
to generate different types of text-based outputs ac-
cording to the following generation paradigms:

Text-to-text: This paradigm includes topic-
based and attribute-based NLG. It processes un-
structured textual inputs to generate new output
text(s). The types of input text include [36, 46,
67]: topics, keywords, sentiment labels, stylistic at-
tributes (e.g., politeness, formality), demographic at-
tributes of the “intended writer” (e.g., gender, age),
information (e.g., event, entity), and text sequencing
or ordering (e.g., from paragraphs, grounded docu-
ments, webpages).

Data-to-Text: This paradigm processes struc-
tured data input to generate new output text, retain-
ing as much relevant information as possible from the
structured data [36]. It includes non-linguistic data
(knowledge-based or table-based data) and can take
the form of knowledge graphs, expert system knowl-
edge bases, database of records, spreadsheets, and
simulations of physical systems [8, 36, 47]. Figure 1
shows an example of data input and its correspond-
ing generated output.

Multimedia-to-Text: This paradigm uses mul-
timedia data input (e.g., image, video, speech) to
generate output text [36]. An example application is
image captioning where the input is an image and

the output is a corresponding text. This is further
discussed in Section 2.3 under “vision-to-language”.

2.3. NLG Tasks

There exist a wide range of common NLG tasks
that can be adapted for a variety of different appli-
cations. This section provides an overview of typical
NLG tasks, organised into nine classes of applica-
tion [8, 36, 46, 67]. We will explore these applications
in further depth in the next issue of this newsletter
(NL-2022-04).

Conversation: This class of application is par-
ticularly relevant in the context of the Question
Answering NLG task (e.g., generating responses to
users’ enquiries about a product), and of the Ques-
tion Generation NLG task (e.g., given an answer,
generating different questions with distinct focuses).
It is also highly relevant to the creation of dialogue
systems, including conversational agents and other
chatbots [67]. The model typically takes as input
some form of background information (e.g., prod-
uct details and/or conversation history [8]) with the
system aiming to generate a relevant utterance or
response.

Summarisation: This class of application fo-
cuses on generating a concise version of a source text
that includes its most relevant information. Beyond
the source text, further input may be provided to
increase the quality of the output text such as key-
words, knowledge graphs, and “soft templates” [67]
which contain some form of structure to guide the
type of summary produced. From this, the NLG
model thus aims to produce as output the new, short-
ened summary of the source text.

Machine Translation: This class of application
encompasses NLG tasks aimed at accurately trans-
lating a given text from one language to another.
An important aspect of machine translation is order
preservation (i.e., alignment) of semantic units, like
sentences, in the source and target text [36]. The
input typically includes the source and target lan-
guages, and the text to be translated, while the out-
put is the translated text.

Paraphrasing: This class of application aims to
change the syntactic content of a source text while
keeping its semantic value. This can be used in a va-
riety of ways, including the plagiarising of a source
text for academic purposes using tools such as “My
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Figure 1: An example of data-to-text generation from Puduppully et al. [47]; the left table shows data
records provided as input, and the right part shows the corresponding generated text output.

Assignment Help” (https://myassignmenthelp.
com/paraphrasing-tool.php), or simply to change
or enhance a source text using tools such as “Quill-
Bot” (https://quillbot.com/). Beyond the source
text, topic information can be provided as input to
help guide the paraphrasing model’s output [36]. The
desired output of a paraphrasing model is thus a re-
written version of the source text.

Creative Writing: This class of application
concerns the generation of novel text(s) involv-
ing different NLG tasks, including story (or narra-
tive) generation, scientific or report writing, artis-
tic writing such as poems, and letter genera-
tion. The “Poem Generator” (https://www.poem-
generator.org.uk/) is an example tool used for
artistic writing. Inputs for creative writing applica-
tions are generally task dependent. Story generation
might take as input information about persona and
plot (i.e., sequence of events, topics, and desired end-
ing) [46], or a knowledge graph capturing those [67].
Scientific/report writing typically takes as input a
set of relevant source documents [46].

Vision-to-Language: This class of application
aims to generate text based on a visual artefact such
as an image or (visual content of a) video. Two NLG
tasks relevant in this class are Image Captioning,
where the goal is to generate a descriptive text of
a given image [36], and Visual Question Answering,
where the goal is to answer questions about a given
image [69]. In both cases, the input is an image (or
images) and the output is one or more sentences re-
sponding to the image. Image captioning can be con-
strained by different attributes to produce varying
styles of caption, e.g., factual, romantic and humor-
ous[19], as illustrated in Figure 2.

Figure 2: Image captioning task constrained by dif-
ferent styles [19].

Audio-to-Language: This class of application
concerns the generation of text from audio artefacts
such as the audio recording (or audio content) of a
video. Relevant NLG tasks include Speech Recogni-
tion to process human voice recording into text for-
mat [36], and Keyword Generation to process audio
and extract relevant keywords from it. The input is
audio and the output is text or keywords.

Style Transfer: This class of application aims
to re-write a text in such a way that it retains the
content of a source text whilst changing a desired
aspect of its style [46]. Common style attributes in-
clude sentiment (e.g., positive/negative), formality
(e.g., formal/informal), and toxicity (e.g., offensive,
non-offensive). The input is a source text and the
source and target styles, and the output is a new
text incorporating the target style [8].

Reasoning: This class aggregates tasks related
to automatic reasoning that can be used to sup-
port other NLG applications, including Conversa-
tion and Creative Writing. NLG reasoning tasks
include: Commonsense Reasoning Generation (or
Generative Commonsense Reasoning) and Argument
Generation [67]. The former aims to mimic humans’
capacity to relate or generalise from a limited set of
information into sentences that make syntactic and
semantic sense [37], as illustrated in Figure 3. The
input may be unstructured text-based input or struc-
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tured data such as knowledge graphs. The latter task
– Argument Generation – aims to produce valid and
original arguments from a set of externally retrieved
evidence such as a set of publications and/or Web
resources [67].

Figure 3: Example of Commonsense Reasoning Gen-
eration from Lin et al. [37], where “Concept-Set”
is the input and “Expected Output” is the goal of
the task. The green box shows output generated by
humans and the red box shows output generated
by machines using different techniques elaborated in
Section 4.

2.4. Training of NLG Models

The main goal of training an AI model is to re-
duce the gap between a desired output and a model
selected output, where the gap is defined by a given
objective function (otherwise known as a loss or cost
function) [46]. In the context of NLG, objective func-
tions are typically leveraged to generate more fluent,
grammatical and diverse generations by attempting
to find the optimum solution (i.e., next token in an
NLG context) for the given objective function [46].
Whilst a number of loss functions are used in NLG,
they typically centre around the comparison between
a predicted token selected by the NLG model (given
a sequence of tokens as input) and a reference to-
ken. By training the NLG model to minimise the
loss between the generated output and the reference
output, the model can ‘learn’ to output good quality
texts.

As most NLG solutions currently rely on deep
learning techniques, it is necessary to provide large
amounts of text data to the NLG model in order to
ensure it is adequately trained to perform a given

NLG task to a desired level of capability. To train
these deep learning models (commonly used tech-
niques include RNNs and LSTMs) for NLG there
exist a number of common training paradigms in-
cluding: supervised learning, reinforcement learning,
and adversarial learning [43].

Supervised Learning: The most common ap-
proaches to NLG utilise (pseudo) supervised learning
via maximum likelihood estimation (MLE) [43]. In
turn, large amounts of training text are provided to
the model of choice as a series of training patterns
(text fragments of a given size, sampled from the
training data). The model is then tasked, for each
training pattern, to predict the token that follows
it [43]. This can, therefore, be thought of as a clas-
sification task, where each class is the equivalent of
a unique token in the training dataset and the to-
tal of number of classes equals the total number of
unique token (words, characters etc.) [43]. Via this
training, the model is thus able to model the prob-
ability of each token occurring, given a sequence as
input. MLE approaches, whilst popular, are limited
by their tendency to overfit to the training data.
This exposure bias means that MLE-based models
are often limited in their ability to generalise be-
yond their training data [43], particularly as they
must now generate tokens based on previously gener-
ated sequences, rather than sequences existing in the
training set. This becomes particularly problematic
as the length of the generated sequence increases [8].

Reinforcement Learning: To try and account
for the limitations in MLE, reinforcement learning
(RL) approaches have been suggested which aim to
optimise non-differentiable metrics of text quality. A
common approach to this is PG-BLEU. This learn-
ing method leverages the popular text evaluation
metric BLEU (Bilingual Evaluation Understudy),
which measures the n-gram overlap between a given
(generated) text and a set of reference texts [7]. In
turn, PG-BLEU aims to optimise for BLEU using
typical RL policy gradient algorithms like REIN-
FORCE [8]. Whilst, in theory, this could allow for
the generation of more relevant texts than MLE-
based approaches, the significant computational cost
of computing BLEU so frequently means that this
approach is seldom used in practice [43]. Addition-
ally, criticism regarding the suitability of BLEU (and
other, similar NLG evaluation metrics) to measure
text quality raise further questions as to the applica-
bility of these RL-based approaches [7]. As such, they
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are less commonly seen in state-of-the-art work [43].
Adversarial Learning: Beyond the above, ad-

versarial approaches to NLG have also been pro-
posed. An early example in this space is the Profes-
sor Forcing algorithm, which uses adversarial domain
adaption to reduce the distance between the train-
ing and generation of an RNN [8]. This, in turn, aims
to limit exposure bias and boost generation quality.
Beyond this, generative adversarial network (GAN)
based approaches have also been suggested, using
the discriminator’s gradient to improve the genera-
tor’s outputs [8]. A variety of GAN-based NLG ap-
proaches have been suggested, including seqGAN,
maskGAN, and LeakGAN – these are described fully
in Section 4. Whilst GAN-based approaches can be
effective, they are inhibited by a number of prob-
lems. The most common of these are issues of van-
ishing gradient, in which the discriminator becomes
much stronger than the generator leading to min-
imal updates being provided [43]. Issues of mode
collapse are also common, in which the generator
learns to sample from a small subset of tokens that
receive higher evaluations from the discriminator [8].
This can lead to the GAN learning only a subset of
the target distribution, limiting its ability to produce
more generalised and diverse texts.

A problem with these typical core approaches to
NLG is the necessity for large amounts of training
data [36]. Without this, NLG models are prone to
overfitting the training dataset and thus fail to gen-
eralise adequately to their desired task [36]. More-
over, even when datasets of sufficient size are avail-
able, the computational resources required to train
these models are often prohibitive, restricting the
feasibility of these solutions for many developers [36].
Additionally, these NLG models are largely task-
specific in nature, only capable of generating text
within the context of the training data provided.
This means that developing NLG models to cover
the large variety of NLG tasks and contexts requires
a wide range of bespoke models, each trained on a
significant amount of training data relevant to each
task.

To help overcome this data scarcity, recent ap-
proaches instead leverage massive pre-trained lan-
guage models [36, 58, 63]. Rather than training
a given model to perform a specific NLG task,
these language models, such as BERT and GPT-
2/3 [14, 48], are instead pre-trained using a generic
unsupervised text prediction task. Examples of these

tasks include Masked LM, in which a series of sen-
tences are presented to the model with a section of
the sentence removed or ‘masked’ [14]. The model
must then attempt to predict the missing part of the
sentence. Other tasks include next sentence and next
word prediction, in which a given input (e.g., a sen-
tence) is provided to the model, and it is tasked with
predicting the following word or sentence [48]. By
training these models to successfully conduct these
‘low-level’ prediction tasks, the language model is
able to achieve a good ‘understanding’ of how the
language in the data provided is used.

Having conducted this pre-training, the model
can then be fine-tuned using small amounts of task-
specific training data to conduct a given NLG task
– leveraging its understanding of language achieved
at the pre-training stage and specifying it using the
task-specific data. Beyond requiring smaller amounts
of data to conduct a given NLG task, this also al-
lows for high degrees of transference in which the
pre-trained understanding of language achieved by
the model can be adapted to a variety of NLG (and
other NLP) tasks. When conducting fine-tuning of
language models for NLG, a few approaches are typ-
ically used:

Few-shot learning: Few-shot learning relies on
providing only a small number of samples during
fine-tuning [36]. A subset of this is one-shot learn-
ing, in which a single sample is provided [36]. This
approach therefore leans heavily on the generalised
understanding of language achieved during the lan-
guage model’s pre-training. Applications of this in
NLG include question answering, in which a few ex-
amples of similar questions are used to fine-tune a
given model, before it is prompted to answer a new
(unseen) question.

Zero-shot learning: Moving beyond few-shot
learning, zero-shot learning asks a given NLG model
to respond correctly to an unseen prompt with no
additional fine-tuning data provided [6, 36]. This ap-
proach thus relies even more heavily on the model’s
ability to generalise from its learning during pre-
training. Examples of this in NLG include the writ-
ing of news articles, using only the headline of the ar-
ticle as a prompt, or the answering of a question with
only the question itself as a prompt. This approach
(alongside few-shot learning) has only become fea-
sible in recent years, with the rapid increase in the
amounts of training data used to build powerful lan-
guage models [6]. An example of zero-shot, one-shot,
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and few-shot learning can be found in Fig. 4
Domain Transfer: Whilst few-shot (and zero-

shot) learning may be desirable, in practice there
is generally a sufficient degree of difference between
the pre-training domain and the task domain that
the model is unable to generalise effectively with
minimal fine-tuning data [36]. In turn, most NLG
approaches utilise domain transfer, in which large
amounts of data are used to adapt the model to
the desired NLG task. This may involve simply pro-
viding large amounts of fine-tuning data, or poten-
tially providing additional data at the pre-training
stage [36]. This approach can allow for greater NLG
performances than can be achieved using few-shot
learning, whilst often still requiring less training data
than other deep learning approaches.

Figure 4: Examples of zero-shot, one-shot, and few-
shot learning. Image source: https://medium.com/
analytics-vidhya/openai-gpt-3-language-
models-are-few-shot-learners-82531b3d3122.

Although the use of powerful language mod-
els pre-trained on massive datasets has allowed for
state-of-the-art capabilities in NLG, this approach to
training has brought with it a number of limitations.

Currently, most NLG models are notably
English-centric, with many of the common pre-
trained approaches specifically only utilising English
datasets (e.g., GPT-2 [48] and XLNet [65]). More-
over, even when efforts are made to include addi-
tional languages, such as in GPT-3 [6], these ad-
ditional languages are typically under-represented
in the training data used [28]. This is particularly
problematic in regard to the current reliance on web
data for pre-trained language models. Whilst this
approach is useful for extracting the vast amounts
of data required for adequate pre-training, this ap-
proach yields clear biases towards a smaller number
of over-represented languages [28].

In order to rectify this, approaches have been
suggested to adapt current NLG methods to bet-
ter support text generation in non-English lan-
guages [56]. Some approaches seek to leverage zero-
shot learning, combined with large language ag-
nostic datasets. Language models pre-trained on
a variety of languages have thus been proposed,
e.g., mBERT [56], mT5 [64], XLM [33], XLM-
R [11]. These have, in turn, shown a reasonable
degree of promise in adapting to text generation
and other NLP tasks in different languages, ei-
ther using their inherent language understanding
achieved through pre-training or through minimal
fine-tuning using texts written in the target lan-
guage [56]. Whilst this approach has achieved a
reasonable degree of success, these models are still
limited by the degree of language variety within
their pre-training datasets [28]. Additionally, issues
of accidental translation in which the generated out-
put contains the ‘wrong’ language are common [64].
Moreover, current research in this space has been
limited by a focus on multilingual pre-training us-
ing genetically related languages. It is currently less
clear as to the degree to which generalisation to non-
related languages is possible [28].

Other approaches instead take a mono-lingual di-
rection, in which the given language model is pre-
trained entirely on text from the desired language
(in the same way as English-only models are). This
has proven to be the most effective approach, gener-
ally exceeding the capabilities of most multilingual
models [4]. However, this method is limited in much
the same way as English-only models are, being con-
fined to generation in a single language. Moreover,
as sufficient data for many languages is not currently
available, reliance on this approach would thus ex-
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Model Dataset(s) Size
BART BooksCorpus, English Wikipedia, CommonCrawl (filtered), OpenWebText 160GB
BERT BooksCorpus, English Wikipedia 16GB
CTRL Wikipedia (En, De, Es, Fr), Project Gutenberg, OpenWebText, Amazon

Reviews, and several other data sources
140GB

GPT BooksCorpus 5GB
GPT-2 WebText 40GB
GPT-3 Common Crawl (filtered), WebText2, Books1, Books2, Wikipedia 570GB
MASS WMT News Crawl (En, De, Fr, Ro) 41.5GB
T5 Colossal Clean Crawled Corpus (C4) 750GB
UniLM BooksCorpus, English Wikipedia 16GB
XLNet BooksCorpus, English Wikipedia, Giga5, ClueWeb 2012-B (filtered), Com-

mon Crawl (filtered)
126GB

Table 1: Pre-training datasets for language models popularly used in NLG.

clude the usage of NLG for many of the world’s lan-
guages [4].

Moreover, issues of bias in the current (typically)
web-based training data for NLG have been noted
beyond the lack of multilingual support [4]. A ma-
jor concern is the degree to which the often atyp-
ical and extreme nature of web content from cer-
tain platforms could have negative effects on the
behaviour of NLG models trained using them [4].
This, in turn, could lead to NLG models that mistak-
enly internalise biases present in their (pre) training
data, which could cause undesirable outputs hostile
against certain protected groups, as well as causing
potential predispositions towards violent or offensive
language and hate-speech [4]. Whilst many of the
filtering processes taken during the data collection
phase aim to limit this, the vast amounts of train-
ing data currently used for natural language model-
based NLG means that sufficiently curating datasets
to limit these harms and biases is currently an open
problem [4].

2.5. Training Datasets for NLG

As popular neural approaches to NLG require
large amounts of high quality text data in order to
be effective, there has been a large amount of ef-
fort dedicated to curating large datasets for NLG.
This has become increasingly important with the rise
of powerful pre-trained language models (mentioned
above), which require sufficiently large datasets to
generalise effectively. A table indicating the datasets
used by several of the most popular pre-trained lan-
guage models can be found in Table 1. In this section

we detail some of the training datasets commonly
used in NLG.

Common Crawl: The Common Crawl dataset
is a massive collection of petabytes of web data cur-
rently hosted by Amazon (https://commoncrawl.
org/the-data/). This dataset contains raw web
page data, metadata extracts, and text extracts
scraped over a period of 12 years. Due to its size,
Common Crawl has been popularly used in the train-
ing and pre-training of many NLG models, including
GPT-2/3 [6, 48], T5 [49], and XLNet [65]. However,
as the dataset is so large and contains within it a
great deal of low quality text [6], current NLG ap-
proaches conduct additional filtering to extract sub-
sets of the data more suited to the NLG or general
language modelling task at hand [6, 49].

WebText: Developed for use in the pre-training
of GPT-2, WebText offers a subset of 8 million web
pages from the Common Crawl dataset containing
web pages that have been previously filtered or cre-
ated by humans [48]. To do this, all outbound links
from the web forum site Reddit with 3 or more
karma were extracted. This ensured that the data
included in WebText had received some degree of
favourable response by humans and was likely of rea-
sonable quality. Any Wikipedia articles included in
this set of articles were then removed since they are
commonly used in other NLG datasets.

OpenWebText: OpenWebText (https://
skylion007.github.io/OpenWebTextCorpus/) is
an open-source recreation of the WebText dataset.
It contains 38GB of text data extracted from more
than 8 million URLs shared on Reddit with at least
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three upvotes.
Colossal Clean Crawled Corpus (C4): An-

other subset of the Common Crawl Corpus, C4
was created for use in pre-training the T5 language
model [49]. To create C4, the authors filtered out all
non-English texts, whilst also removing short texts,
obscene texts, duplicates, and non-natural language
text.

BooksCorpus: Created by [70], the BooksCor-
pus dataset contains a collection of 11,038 unpub-
lished books scraped from the web. These books are
all at least 20K words in length, and include a vari-
ety of genres including fantasy, romance, and science
fiction.

ClueWeb12: Created by the Lemur Project, the
ClueWeb12 dataset contains more than 7 million
web pages scraped between 2010 and 2012 (https:
//lemurproject.org/clueweb12/).

Giga5: The English Gigaword Fifth Edition
(Giga5) is a dataset of English newswire text data
extracted from seven sources including the Los An-
geles Times/Washington Post Newswire Service, the
Washington Post/Bloomberg Newswire Service, and
the Xinhua News Agency, English Service (https:
//catalog.ldc.upenn.edu/LDC2011T07). The data
collection process was conducted over a number of
years, beginning with the first edition in 2003 and
ending with the fifth edition in 2010.

WMT News Crawl: WMT News Crawl
(http://data.statmt.org/news-crawl/) dataset
contains 1.5 billion lines of monolingual text from
59 languages, extracted from online newspapers. It
was released for the Workshop on Statistical Ma-
chine Translation (WMT) series of shared tasks.

Wikipedia: Likely due to its size and
availability (https://en.wikipedia.org/wiki/
Wikipedia:Database_download), Wikipedia data
has been commonly used in NLG [14]. In turn, many
powerful models have leveraged subsets of the com-
plete list of articles on Wikipedia, typically filtering
it by the languages relevant to the desired language
modelling/NLG task [14, 29]. This data is typically

also filtered to only include the actual text content
of the articles themselves, with non-prose based text
such as tables, lists, and headers commonly being
excluded [14].

2.6. Underlying Techniques of NLG
Methods

Earlier approaches to NLG typically relied on
techniques that leveraged rule-based or data-driven
pipeline methods to generate text [7]. These ap-
proaches often utilised theoretical concepts of lan-
guage, such as Rhetorical Structure Theory and Dis-
course Representation Theory, which allow for the
modelling of discourse structures and syntactical
relationships [7]. Template-based models were also
commonly used, in which new texts are generated by
‘filling in’ the slots of a predetermined template with
text-items selected by the NLG model [13]. Further
approaches combined basic data-driven modelling
with statistical techniques, e.g., by using Markov
Chains to sequentially generate texts by predicting
the next most probable word [44]. In general, how-
ever, these early techniques were typically limited in
their NLG abilities, often struggling to model longer
sequences and failing to adequately generalise from
their initial training data and/or template.

With the rise of deep learning and several promi-
nent methods for modelling sequences such as RNNs,
their extension the LSTM, and Transformers, there
has been a noted paradigm shift in NLG. In turn,
current approaches typically leverage these deep
learning approaches in an unsupervised manner,
training them to learn sophisticated text represen-
tations from massive amounts of text data before
fine-tuning them on a specific NLG task. Current
trends in NLG have particularly focused on the use of
Transformer models, such as GPT-2/3, pre-trained
on very large datasets as a means of generating text
in a wide variety of NLG tasks. We provide a more
detailed overview of the common AI techniques used
for NLG in Section 4.

© 2021 University of Kent, UK Page 13

https://lemurproject.org/clueweb12/
https://lemurproject.org/clueweb12/
https://catalog.ldc.upenn.edu/LDC2011T07
https://catalog.ldc.upenn.edu/LDC2011T07
http://data.statmt.org/news-crawl/
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download


3. Evaluation of NLG Methods

3.1. Introduction

Beyond the construction of a given NLG sys-
tem, a further challenge in generating synthetic texts
is presented by the manner in which these AI-
generated texts can be successfully evaluated. Owing
to the open-ended nature of many NLG tasks (re-
viewed in Section 2.3), the role of creativity in the
text generation process, and the natural ambiguity
of language, conducting successful evaluation is an
ongoing challenge within the field of NLG [7].

Currently, there exist many different approaches
to evaluating the outputs of a given text genera-
tor [7, 23]. In turn, we systematise these approaches
using a series of different categories: the evalua-
tor, the level of interactivity used, the internality
of evaluation, the measures used for evaluation, and
the overall methodological approach taken. Finally,
we end by reviewing some of the existing standard-
ised evaluation methods and tools that are currently
in use, the best practices suggested in previous re-
search, and the challenges still posed by a lack of
standardisation in this area.

The content of this section is derived from a
meta-review of 12 survey articles regarding the eval-
uation of NLG systems [1–3, 5, 7, 17, 20, 23, 26, 51,
59, 60].

3.2. Evaluators

Central to the evaluation of NLG systems is the
role of the evaluator. That is, the agent responsible
for evaluating the given NLG system. In turn, we
identify two overarching types of evaluator that are
used in NLG evaluation: human-based and auto-
mated machine-based.

The human evaluator refers to the use of human
agents as the judges of a given NLG system [7]. Hu-
man evaluators are typically called upon to perform
one of three evaluation tasks: (1) they may be asked
to rate a sample of generated outputs from a given
NLG model in a stand-alone fashion [23], (2) they
may be tasked with comparing or ranking outputs
from a series of NLG models [7], or (3) they may be
tasked with conducting some form of modified Tur-
ing test, using their abilities to distinguish between
generated texts and human-created texts [20].

Additionally, human evaluators can then be sub-
dived into expert and non-expert evaluators [59].

Typically, NLG evaluations are conducted using ei-
ther a small number of expert evaluators or a larger
number of non-expert evaluators, though the pre-
cise numbers commonly used vary significantly from
study to study – with typically 1-4 expert evalua-
tors used and anywhere from 10-60 non-expert eval-
uators being common [59]. Whilst most approaches
utilise either expert or non-expert evaluators, there
is the potential for the usage of both to be of value
as research indicates that different insights can be
gleaned from human evaluators with varying levels
of expertise [59].

Humans evaluators are commonly used and gen-
erally considered the ‘gold-standard’ for NLG eval-
uation. This is due to their superior capabilities
of language comprehension and strong abilities to-
wards context-based evaluation (relative to auto-
mated evaluators), as well as the added depths of
insight that they can provide [7, 26, 51].

However, it is also worth noting that there are
limitations in the current usage of human evaluators.
Firstly, human evaluation can be time-consuming
and inefficient to conduct [2, 26]. Moreover, the
use of human evaluators requires some form of re-
cruitment process which may be prohibitively ex-
pensive for some NLG projects [7]. Additionally,
there can be issues of consistency when using hu-
man evaluators. As human evaluators must typically
rely on relatively, if not entirely, subjective judge-
ments, criticisms of the consistency and replicability
of projects evaluated using human evaluators are also
common [7, 51].

Parallel to the usage of human evaluators is au-
tomated evaluation. In this approach, some form of
automated methods are utilised to provide evalu-
ation of the NLG system [17]. Automated evalua-
tion, in turn, can then be categorised into two fur-
ther sub-domains: untrained automatic evaluation
and machine-learned evaluation [7].

Untrained automatic evaluators, the form of au-
tomated evaluator most commonly utilised in NLG
studies, rely on the use of one, or a series of, objective
metrics to evaluate a given NLG system [17]. These
metrics require no pre-training and can be used to
provide efficient evaluations of large amounts of gen-
erated data.

However, there are issues regarding the abilities
of these automatic approaches to successfully repli-
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cate human judgement – with low correlations often
being found between these metrics and human eval-
uations [17]. Moreover, automatic approaches are of-
ten limited in their ability to provide more holistic
measures of automated text quality, which can be
particularly limiting in scenarios in which a given
NLG system is applied to more creative tasks such
as story generation [7].

A more recent approach to automated evaluation
concerns the use of machine-learned evaluators [7].
Rather than leveraging predetermined measures of
evaluating NLG systems, this approach attempts to
train machine learning models to act as pseudo-
human evalautors. In turn, this aims to account for
the limitations of automatic evalautors in captur-
ing holistic qualities of generated texts and in corre-
lating with human judgement. Currently, however,
there has been less research into the creation of these
evaluators and they remain relatively underused in
NLG studies [7].

3.3. Interactivity

Interactivity refers to the the manner in which
the evaluator engages with the generated artefacts
to evaluate. In turn, this leads to two forms of inter-
activity: static, and interactive [17].

In static evaluation, the evaluator is simply pre-
sented with samples of the generated output of a
given NLG model [17]. The evaluator can then pro-
ceed to offer judgements on the sample provided.
This approach is by far the most common in NLG
evaluation and is task agnostic – meaning that it can
be conducted with any form of NLG system directed
towards any of the numerous NLG tasks possible –
and can be used for both human and automated eval-
uation.

Whilst static evaluation has the advantage of be-
ing broadly applicable (often being the only applica-
ble approach to NLG evaluation) it can be limited
when evaluating dynamic NLG systems. This is par-
ticularly true in the case of chatbots and other dia-
logue systems, where the offline evaluation of their
text outputs in isolation can often lack relevance
in terms of evaluating the true capabilities and be-
haviours of the dynamic NLG model [17].

In turn, interactive evaluation is offered as a so-
lution to this. Interactive evaluation is conducted
via direct interactions with the NLG system, as if
the evaluator was a user [17]. The evaluator is thus
able to directly interact with the NLG system and

provide their evaluations in response to the NLG’s
abilities within its desired role [17].

Although interactive evaluation can provide
greater value in understanding the capabilities of a
dynamic NLG system it is also more complex to im-
plement, typically requiring more time and evaluator
effort than static evaluation. Moreover, the added
complexity of interactive evaluation means that the
use of automated evaluators is considerably more dif-
ficult to implement. This, in turn, typically necessi-
tates the use of human evaluators [17].

3.4. Internality

Internality refers to the area that the evalua-
tor should emphasise when making judgements of
an NLG system. Specifically, internality can take
one of two distinct attributes: intrinsic and extrin-
sic [3, 7, 59].

With an intrinsic approach to NLG evaluation,
the goal is to evaluate the proposed NLG system via
a direct assessment of its generated outputs [7]. With
extrinsic evaluation, the aim is instead to assess the
NLG system based on how successfully it achieves an
intended goal or downstream task [7]. For instance,
an extrinsic evaluation of an NLG system designed to
generate advertisements for cars may be conducted
by examining how well these adverts increase car
sales, whereas an intrinsic evaluation would focus on
assessing the content of the advertisements them-
selves.

In general, intrinsic methods are most commonly
used in NLG studies [7] – with one review identi-
fying only 3 (3%) papers that utilise extrinsic eval-
uation [59]. Due to its focus on evaluating the NLG
system in a downstream process, extrinsic evaluation
often requires a more long-term and costly evalua-
tion process [7]. Additionally, current NLG research
is typically focused on smaller sub-tasks lacking the
clear real-world application required to perform ex-
trinsic evaluation [59]. However, it is also typically
considered a more relevant and tangible form of eval-
uation, and as NLG systems become more integrated
into real-world applications an increase in this form
of evaluation is likely.

3.5. Evaluation Measures

Emerging from the choices of the evaluator and
its level of interactivity and internality are the mea-
sures that are to be used to score the ‘quality’ of
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Figure 5: Example of the original quality criterion names used in the literature and the variety of nor-
malised criteria these names are actually referring to [26]. This highlights the lack of common definitions
in the current usage of quality criteria.

a given NLG system or model. These measures, in
turn, are generally divided by the evaluator used
into measures for human evaluator-based evaluation
and measures for machine-based evaluation [7]. We
present the most common measures used in NLG
evaluation for each of these.

Human-based evaluation measures are typically
based on examining the direct scores provided by
a series of human evaluators on a set of generated
texts [26]. In turn, this can be divided into two parts:
the quality criterion and the evaluation mode [3, 26].
These two parts combine to allow a human evaluator
to provide their assessment of the relevant aspects of
an NLG system’s quality.

Quality criterion describes the aspect of the NLG
system’s outputs that the human evaluator is at-
tempting to measure [3, 23, 26]. Human-based eval-
uation methods will often measure multiple qual-
ity criteria, where each criterion relates to a desir-
able component that should appear in a quality AI-
generated output.

There are a large range of quality criteria in cur-
rent usage that can be sub-divided taxonomically in
a variety of ways. In [26], the authors identify the
high level quality concepts of measures of correct-
ness and measures of goodness that define the cur-
rent quality criterion used in NLG studies. Further
sub-classes then ask the evaluator to consider the
quality of the text either in its own right, relative to
a reference external to the NLG system, or relative
to the inputs provided to the NLG system [26].

A key limitation in current studies is that the

quality criteria measured are essentially innumer-
able and often very different from one study to the
next [3, 26]. A lack of a common vocabulary for these
quality criteria is also a key limiting factor in replica-
bility and comparison, with papers frequently using
the same quality criteria name but with varying def-
initions (as shown in Fig. 5) [3, 5, 23, 26, 51, 59].

Some of the most commonly used quality crite-
rion are:

Fluency: This refers to the degree to which a
generated text, or set of generated texts, mimics the
intended language it is written in [23]. A broad crite-
rion, this can include considerations of correct gram-
mar and syntax, spelling, and style. Whilst most
commonly used in machine translation, fluency can
be easily applied to any NLG task in which fluent
writing is desired. This has lead to it becoming one
of the most commonly used dimensions in existing
studies [59]. Additional aspects of fluency, including
tone and formality, are also of importance to style
transfer tasks [5]. Due to its broad nature, however,
a lack of clear definition for fluency within the NLG
literature is problematic [3].

Usefulness: Usefulness is a criterion focused
around the degree to which the generated text is
valuable for a given task or information need [26].

Factuality: Factuality examines the degree to
which the generated text is logically coherent, and
the degree to which its statements are true [7]. The
first aspect of factuality is broadly useful for NLG
evaluation, whilst the second aspect is of particular
value to tasks such as news generation, where accu-
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rate reporting in the generated text is desired.
Naturalness/Typicality: Naturalness (also

called typicality) asks the evaluator to assess how
‘typical’ a given generated text is, or how often
they’d expect to see a text like this [23, 59]. This
is usually considered in terms of how likely a natural
speaker would produce the given text, and can be
measured in terms of both the content and form of
the output [26].

Grammaticality: This criterion asks the eval-
uator to measure the extent to which the generated
text is free of grammatical errors [26].

Evaluation mode, in turn, describes the approach
by which the human evaluator provides a measure of
how successful the NLG system has been in captur-
ing a given quality criterion (or criteria) [3].

Evaluation modes also have their share of lim-
itations, often hindered by subjective criteria that
makes interpretation and comparison of scores
recorded by multiple evaluators difficult [23]. This is
particularly problematic when comparing studies [2].
Additionally, there is also a clear lack of consensus
as to the most effective evaluation modes to use in
human evaluation of NLG systems, with a wide va-
riety of scoring techniques commonly being used in
the literature [5, 59].

Common evaluation modes include:
Preference: This evaluation mode involves the

evaluator selecting their preferred text, or texts,
from a set of texts [59]. These texts are typically a
collection of generated outputs from a series of mod-
els or a combination of AI-generated and human-
created texts [59].

Numerical Scale: One of the most commonly
used evaluation modes, numerical scales ask the eval-
uator to rate the quality of a set of generated text(s)
on a sliding scale (e.g., from 1 – 5 as shown in Fig-
ure 6) [2]. This allows for a more fine-grained mea-
surement of the quality of the generated outputs
compared to binary scoring [7].

Figure 6: Example of a numerical scale.

Graphical Scale: Similar to numerical scales,
graphical scales utilise words or phrases (as opposed

to numbers) for each rating value (See Figure 7 for
an example) [2].

Figure 7: Example of a graphical scale.

Likert Scale: Likert Scales are an aggregate
scale comprised of multiple graphical scales called
Likert Items [2] (see Figure 8 for an example). This
allows for a survey-style approach that record overall
evaluator impressions based on responses to multi-
ple dimensions of a set of generated texts. Due to
the lack of consistent intervals between scale items,
however, many researchers state Likert Scale results
must only be considered in aggregate, though there is
much disagreement regarding this [2]. This confusion
makes evaluator–evaluator and study–study compar-
isons using Likert Scale evaluation particularly dif-
ficult (though all of the evaluation modes presented
here suffer from this to some extent). Despite this,
Likert Scales remain popular in NLG evaluation [2].

Figure 8: Example of a Likert scale.

Ranking: To overcome the limitations of the
above approaches, ranking has been used as a means
of human-based evaluation. Rather than scoring the
generated texts, the evaluator instead ranks the gen-
erated texts according to their quality [23]. This has
the advantage of allowing for better inter-evaluator
comparison, but only provides a relative apprecia-
tion of the NLG model or its outputs, rather than a
true measure of its output quality [7]. Ranking can
also be limited by its complexity, with large numbers
of comparisons becoming prohibitively complex.
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Extending the use of direct measures of quality,
some studies leverage existing inter-annotator agree-
ment metrics to better account for the level of unity
in the scores provided by a set of human evalua-
tors [7]. These metrics measure the amount of agree-
ment between evaluators and provide indications of
the extent to which evaluators concur with the suit-
ability or quality of the NLG model they are eval-
uating [1]. It is worth noting that the use of inter-
annotator metrics in NLG evaluation is generally less
common than the sole use of individual metrics (ap-
pearing in only 12.5% of papers examined in [59]),
and that even when they are used, the agreement
scores are typically lower than what would be con-
sidered ‘acceptable’ [1, 5, 7, 23, 59].

Furthermore, there are questions regarding the
suitability of inter-annotator agreement as a sole
metric for evaluating consistency in NLG evalua-
tions [1]. Due to the ambiguous and varied nature
of language, there are questions regarding whether a
metric focusing on strict agreement – as is the case
with inter-annotator agreement metrics – is suitable
given the potential for different (but valid) interpre-
tations of the same texts [1].

The most commonly used inter-annotator met-
rics are:

Percent Agreement: Percent agreement is the
most straightforward means of measuring agreement
between two independent evaluators. It simply re-
ports the percent of cases in which the two evalu-
ators agreed with each other [7]. Whilst popularly
used in NLG evaluation, percent agreement fails to
account for the possibility that agreement between
evaluators may occur by chance [1]. This is partic-
ularly problematic when utilising individual metrics
with fewer scoring options such as binary scoring.
Percent Agreement is given as

Pa =

∑|X|
i=0 ai
|X|

where X is a set of generated texts for which
evaluators assign a score to each text xi, and ai is
the characteristic function denoting agreement in the
scores for xi. Hence, ai = 1 if the evaluators assign
the same score and ai = 0 if not.

Cohen’s κ: Improving on percent agreement,
Cohen’s κ is able to account for the possibility of
agreement occurring by chance in the annotations of
two evaluators [10]. To achieve this, Cohen’s κ de-
fines the probability of two evaluators, e1 and e2,

agreeing by chance as

Pc =
∑
s∈S

P (s|e1) ∗ P (s|e2)

where S is the set of all possible scores for texts
in X. The conditional probabilities P (s|ei) are esti-
mated via the frequency with which the given evalu-
ator assigned each of the possible scores in S. Com-
bining percent agreement Pa with the probability of
agreement by chance Pc, Cohen’s κ is defined as

κ =
Pa − Pc

1− Pc
.

Fleiss’ κ: Fleiss’ κ improves on Cohen’s κ by
measuring the agreement of more than a single
pair of evaluators by considering all pairwise inter-
annotator agreements [18]. To this, ai, the agreement
of scores for two evaluators for a given generated
text, is redefined as

ai =

∑
s∈S # pairs scoring xi as s

# evaluator pairs .

The probability of agreement by chance, Pc is
also redefined by estimating the probability of a
given score by the frequency of that score across all
evaluators. This is defined as

Pc =
∑
s∈S

r2s

where rs is the proportion of evaluators that as-
signed a given score s. Fleiss’ κ is thus defined using
the same definition of Cohen’s κ, combining the def-
inition of Pa used for percent agreement alongside
the redefined Pc.

Krippendorff’s α: Reevaluating the approaches
above to consider the likelihood of disagreement,
Krippendorff’s α, as with Fleiss’ κ, can be used to
evaluate multiple annotators whilst accounting for
agreements that occurred by chance [32]. Moving
beyond Fleiss’ κ, however, Krippendorff’s α is also
capable of handling missing values, where Fleiss’ κ
and Cohen’s κ cannot [32]. To define Krippendorff’s
α, we first find the probability of disagreement using

Pd =

|S|∑
m=0

|S|∑
n=0

wm,n

|X|∑
i=0

# pairs scoring xi: (sm, sn)

# of evaluator pairs

where (sm, sn) indicates one possible score pair,
and wm,n the weight used to adjust the degree of pe-
nalisation for a given disagreement. The probability
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of agreement by chance is also redefined, using rm,n

to represent the proportion of all evaluation pairs
that assign the scores sm and sn. Given this, the
probability of agreement by chance is defined as

Pc =

|S|∑
m=0

|S|∑
n=0

wm,nrm,n.

Given the probability of disagreement Pd, and
the redefined probability of agreement by chance Pc,
Krippendorff’s α is calculated using

α = 1− Pd

Pc
.

Whilst a range of automated evaluation mea-
sures and metrics exist, including more sophisticated
approaches built around trained machine learning
models, most automated evaluation of NLG lever-
age untrained automated evaluation metrics [7].
These automated metrics offer an objective, easy-
to-implement method for measuring the quality of
generated texts [17], centred around the compari-
son of a set of generated texts to a gold-standard
set of (generally human-created) reference texts [7].
The assumption is that the closer the generated texts
are to the reference texts, the better. Whilst a large
number of automated evaluation measures exist, the
most commonly used in NLG studies are n-gram
overlap metrics [7, 17, 60].

N-gram overlap metrics are designed to measure
the degree of similarity in the n-grams present in
the generated texts when compared to a set of ref-
erence texts [20]. These approaches typically lever-
age word-based n-grams, though other n-gram ap-
proaches (e.g., character n-grams) can be used. The
assumption is that the larger the overlap in n-grams
between the generated text and the reference texts,
the higher the quality of the generated text.

Some of the most commonly used n-gram overlap
metrics are:

BLEU: The Bilingual Evaluation Understudy
(BLEU), is one of the oldest and most commonly
used n-gram overlap metrics [45]. Originally in-
tended for evaluating machine translation tasks,
BLEU has seen further use in other generation tasks
including style transfer, story generation, and ques-
tion generation [7]. BLEU works by comparing the
overlap in the n-grams of a candidate (generated)
text and the n-grams of a set of reference texts us-
ing the weighted geometric mean of modified n-gram

precision scores [45]. N-gram precision scores are cal-
culated by measuring the fraction of n-grams ap-
pearing in the generated text that appear in any
of the reference texts. An example of BLEU can be
found in Fig. 9. In this figure, note that candidate 2
is ranked lower than 3, despite more closely match-
ing the meaning of the reference. This highlights a
key limitation of n-gram based metrics, which can
overemphasise surface level lexical similarities.

Figure 9: Example of BLEU for three generated can-
didates. Image source: [54]

ROUGE: The Recall-Oriented Understudy for
Gisted Evaluation (ROUGE) works in much the
same way as BLEU, but focuses on measuring re-
call rather than precision [38]. In other words,
ROUGE measures the fraction of n-grams in the
references texts that appear in the generated can-
didate text. ROUGE itself is a broad class that
describes a set of variants. Most commonly used
are the ROUGE-N variants, where N is the size of
n-gram to be evaluated (e.g., ROUGE-1 evaluates
unigram overlaps) [7]. Another common variant is
ROUGE-L, which evaluates the longest sequence of
shared tokens in both the generated and the refer-
ence texts [38]. ROUGE is generally considered to
yield more interpretable scores than BLEU [7].

METEOR: The Metric for Evaluation of Trans-
lation with Explicit ORdering (METEOR) attempts
to improve on some of BLEU’s weaknesses by utilis-
ing the weighted F-score using unigrams, where re-
call is weighted more heavily than precision as this
has been found to yield higher correlations with hu-
man judgement [34]. Moreover, METEOR also in-
corporates a penalty function that penalises incor-
rect unigram order [34].

CIDEr: The Consensus-based Image Descrip-
tion Evaluation (CIDEr) utilises a consensus-based
protocol to measure the similarity of a generated sen-
tence to that of a set of human-created reference
sentences using TF-IDF weighted n-gram frequen-
cies [62]. Originally intended for evaluating gener-
ated image captions, CIDEr has also been used in
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Figure 10: Diagram of BERTScore. Image source: [68]

the evaluation of other NLG tasks including online
review generation [20].

Whilst being some of the most commonly used
metrics in NLG evaluation, n-gram overlap metrics
are often criticised for their lack of correlation with
human judgement [7, 59, 60]. Additionally, these
metrics fail to account for more holistic qualities in
generated texts including fluency and grammatical
correctness [60]. Moreover, the assumption that a
good text is equivalent to a text that closely mir-
rors the reference set is potentially faulty, as unex-
pected texts could still be of sufficient quality [60].
This leads to additional difficulties in justifying the
relevancy of the reference set and, in turn, the mean-
ingfulness of the metric scores achieved [59]. Due to
the high degree of criticism levelled at untrained au-
tomated NLG metrics, more recent proposals have
been made to leverage machine-trained evaluators
to measure an NLG system’s quality [7].

Whilst these metrics leverage more sophisticated
machine learning models, they are typically still used
to examine similarities between the generated sam-
ples and a series of reference texts [7]. The use of the
machine-trained evaluator is thus a means of con-
ducting more sophisticated comparisons that lever-
age more latent, and more relevant, aspects of text
(e.g., semantics and syntax) as opposed to the more
surface-level comparisons of the untrained metrics
above.

A common approach is to leverage machine-
trained models for measuring the semantic similarity
between generated and reference texts via the use
of learned word and sentence embeddings [7]. Vari-
ous attempts have been made towards this, including
more traditional embedding approaches such as skip-
thought [31], fastsent [25], quick-thought [41]; and
newer approaches that leverage pre-trained language

models and contextual embeddings like BERTScore
(Fig. 10) [68]. In essence, these approaches examine
similarities in syntax and semantics between gener-
ated texts and gold-standard reference texts via ex-
amining the embedding distances between the two
using some form of distance, e.g., cosine similar-
ity [7]. The assumption being that higher quality
generated texts will more closely match the refer-
ence texts in terms of both semantics and syntax.

Beyond this, further proposals have been made
to leverage trained models to perform regression-
style evaluation of NLG translation systems, such
as the GRU (gated recurrent unit) based RUSE [7],
which are used to predict a scalar value indicative of
the quality of a generated (translated) text relative
to a reference text. Semi-supervised methods, like
ADEM [42] and HUSE [24], have also been proposed
as a means of leveraging human judgements in the
decision making of the machine learning model [7].

In general, the research conducted towards devel-
oping machine-learned metrics are promising, with
high correlations often being found between their
scores and human judgement. Despite this, however,
their adoption is still relatively low in NLG evalua-
tion [7].

3.6. Evaluation Methods

As with the majority of the items above, the
methodological process of evaluating NLG systems
is typically categorised by the type of evaluator
used: i.e., human-based methods and machine-based
methods [7].

As discussed above, human judgement is typ-
ically considered the most effective form of NLG
evaluation [7]. Due to the innate ability of humans
towards language and their clearer appreciation of
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the role of context and semantics, human evaluator
methods can be highly effective.

With human approaches to NLG evaluation, the
most common methods utilise intrinsic, static forms
of evaluation [7, 17]. Through this approach a set
of human evaluators are generally presented with a
series of generated texts and will be tasked with pro-
viding judgements on the quality of these texts based
on their ability to maximise a set of quality crite-
ria, via a prescribed scoring mode [3]. The scores
recorded by each human evaluator are then generally
analysed in some manner, typically via basic statis-
tical measures, to gain an overall appreciation of the
capabilities of the NLG system in question [23].

Interactive intrinsic human evaluation methods
are also possible, and are commonly advocated for
when evaluating dialogue systems [17]. These ap-
proaches again utilise the basic dimension-scoring
measures, but allow the human evaluator to exam-
ine the artificial texts as they are generated in real-
time [17]. This approach also allows the human eval-
uator to directly prompt the NLG system, allowing
for the evaluator to gain a better sense of the quality
and relevance of the texts being generated.

Additionally, some approaches have utilised hu-
man evaluation methods with a focus on interactive
extrinsic evaluation [7]. These methods of human-
based extrinsic evaluation thus measure how effec-
tive the NLG system is at allowing the user to suc-
ceed at a given task. One early example of this
utilised an instruction generation system, where hu-
man evaluators were required to follow the generated
instructions [7]. Evaluations were then made based
on the success of the evaluators in achieving the de-
sired tasks by following the instructions.

Moreover, extrinsic interactive human evalua-
tion is more commonly used in evaluating dialogue
systems and chatbots [7]. These methods typically
utilise some kind of feedback form or dimension-
based scoring measure and evaluate the ability of
the dialogue system to meet user needs over longer
periods of time. This is distinct from intrinsic inter-
active evaluation, as the focus is on the satisfaction
of user requirements rather than the direct quality
of the dynamically generated text [17].

There are, however, distinct limitations and in-
consistencies in the current usage of human evalu-
ation methods of NLG, the core issue being that
there is little agreement or standardisation in the
manner in which human evaluation should be con-

ducted [3, 23, 26, 51].

In the literature at large, there is a wide range of
evaluator numbers used, with some studies leverag-
ing as few as two, whilst others use 500+ (typically
through crowd-sourcing) [5, 20, 23]. Additionally,
some studies rely on expert evaluators, whilst others
recruit non-experts – typically with little justifica-
tion for this decision [59]. Moreover, many studies do
not report the number of evaluators used [5, 51, 59].

There is also little consensus on how many gen-
erated samples should be evaluated, with as few as
two up to more than 5,400 [5, 23, 59]. Moreover, some
studies provide the same set of samples to all evalu-
ators, whilst others provide different subsets to each
evaluator [59]. It is currently unclear as to how these
variations between studies may effect the quality of
the evaluations performed.

There are also questions regarding the manner in
which evaluators are selected [5, 23]. Some research
has published concerns as to the role that selection
bias may play in evaluation, particularly with the
use of crowd-sourced evaluators where demographic
information is hard to produce. This, coupled with
the typically low number of evaluators used, could
cause further unconsidered effects on the evaluators
given [23].

Finally, there are significant inconsistencies in
the reporting of human evaluation methods [3, 5, 26,
51, 59]. In turn, it is not uncommon for NLG papers
to not include details of the number of evaluators
used, the questions posed to evaluators, or even the
manner of scoring or quality criterion that the eval-
uators used [26, 51, 59]. An example of this is pro-
vided by Howcroft et al. [26] (as shown in Fig. 11),
in which they note that over half the papers studied
did not define the quality criterion used in their eval-
uations. These inconsistencies in reporting within
nearly every aspect of the human evaluation method
further emphasise the problems above, compound-
ing the difficulties of replicability and comparison
between NLG studies [26, 51].

Whilst machine-based evaluations can, in the-
ory, be conducted using both static and interactive
approaches and intrinsic or extrinsic approaches, in
general automated evaluation has focused on the use
of machine-based evaluation as applied to intrinsic,
static evaluation [7, 17, 20].
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Figure 11: The number of papers explicitly naming
and defining the quality criterion used in their hu-
man evaluation, as identified by Howcroft et al. [26].

Generally speaking, machine-based evaluation is
centred around the leveraging of one or more of the
untrained automated evaluation metrics discussed
in Section 3.5 [7]. Often, multiple metrics will be
reported as a means of attempting to balance the
weaknesses of each individual metric [17].

The popularity of this approach is likely due to
the efficiency of implementation and the ease with
which it can be scaled to evaluate large numbers of
generated texts/systems. However, many criticisms
have been levied towards the use of these automated
metrics, arguing that they offer poor indications of
the genuine quality of NLG systems with typically
low correlations with human judgement [17]. Addi-
tionally, issues of reporting are equally prevalent,
with studies often neglecting to include relevant in-
formation such as the the number of generated sam-
ples evaluated and the sampling method used to se-
lect these generated samples.

Moreover, whilst the usage of machine-trained
evaluation approaches are becoming more studied,
they are still relatively uncommon [7]. This is likely
to be an area of distinct progress in future, due to the
unreliable nature of existing, untrained approaches
to automated NLG evaluation.

To help compensate for these weaknesses, it is
common for studies to utilise human evaluators to
provide greater insights and confidence to the perfor-
mance of a given NLG system, whilst also reporting
automated metrics to better aid with replicability
and comparison with the state-of-the-art [7].

However, limitations regarding the lack of report-
ing in general, replicability in regard to human eval-

uators, and lack of correlation with human judge-
ment in regard to automated metrics, means these
combined approaches are still vulnerable to some of
the key weaknesses inhibiting current NLG evalua-
tion methods [7, 17, 23].

3.7. Standards

The evaluation of NLG systems is currently ham-
pered by the distinct lack of standardised approaches
and generalisable methodologies [3, 26, 59, 60]. In-
stead, NLG papers – even those conducting simi-
lar tasks – often take highly contrasting approaches
to their evaluation [7]. Even with more popular ap-
proaches, such as the use of human evaluators using
a quality criterion-evaluation mode method, the ex-
act specifications of these approaches can vary sig-
nificantly [3, 59]. This includes variations in defini-
tions of quality criteria, scoring methods used, and
the construction of the evaluation methodology as a
whole [3, 23]. Moreover, a lack of adequate recording
of the evaluation approaches taken is additionally
problematic, often making it hard to fully under-
stand the evaluative process of a given NLG study
and making it highly difficult to replicate and/or
compare studies [59].

Given this, one could be forgiven for assuming
no such standardised NLG evaluative approaches
exist, but this is not the case. In [7], the authors
detail several examples of existing platforms devel-
oped to standardise NLG evaluation. These include
GENIE [30] (an example of the GENIE architec-
ture can be found in Fig. 12) and GEM [21]; two
evaluation platforms that have been proposed as a
means of bench-marking NLG systems using both
automated and human evaluation across multiple
datasets and NLG tasks, including text summarisa-
tion, text simplification, and dialogue generation [7].
Moreover, other task-specific evaluation platforms
also exist, including ChatEval which provides a web-
interface for standardised evaluation and comparison
of NLG chatbots and dialogue systems to the state-
of-the-art results, leveraging both automated met-
rics and human judgement [53]. Despite the existence
of these platforms, however, adoption has been very
low across NLG research.

To help solve the problems posed by a lack of
consistency and generalisability, many of the review
papers included in this study propose best practices
that should be followed when conducting NLG eval-
uation.
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Figure 12: The GENIE architecture [30] applied to
a text summarisation task. GENIE combines both
human and automated evaluation techniques.

In [51], the authors discuss the need for clearer
and more consistent reporting of NLG human eval-
uation methodologies. To this end, they list a set
of important design parameters that should be de-
tailed when reporting. These aspects focus on: in-
cluding discussion of question design and presenta-
tion, including wording and scoring approaches; de-
tailed discussion of the quality criteria used, includ-
ing the clear naming of each criterion and a descrip-

tion of how these criteria are defined in the work;
and, an in-depth description of any human evalua-
tors used, including details of their expertise, demo-
graphics, recruitment, and compensation. The au-
thors also note that justifications of these decisions
should be included where relevant and be rooted in
previous literature where possible to improve consis-
tency and aid in cross-study comparison.

Belz et al. [3], van der Lee et al. [59], and
Howcroft et al. [26] provide similar guidance as to
the best practices in reporting human NLG evalu-
ation. The authors, in turn, highlight similar needs
for details regarding quality criteria, the evaluators
used, and the questions posed. They also highlight
the need for additional details not mentioned by
Schoch et al. [51], such as a clear discussion of the
evaluation design, including the number of evalua-
tors used, the number of samples provided to each
evaluator, the information given to evaluators (e.g.,
training, instructions, interface), and the method for
sampling the generated outputs provided to evalua-
tors.

In summary, there exist a range of papers aimed
at developing generalisable approaches and best
practices to NLG evaluation. However, adoption of
these appear low, with little indication of a trend to-
wards more standardised approaches to NLG eval-
uation. This, in turn, remains an ongoing problem
that needs addressing to ensure adequate NLG eval-
uation, and to allow for clear comparison between
different approaches to various NLG tasks.
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4. Relevant AI Techniques for NLG

4.1. Introduction

Recent advancements in AI, particularly in the
field of deep learning, have led to the development of
more powerful language models that can better ‘un-
derstand’ natural languages. This, in turn, has led to
increased capabilities towards the generation of more
realistic and convincing natural language text. This
section sheds light on some of the commonly used
AI techniques for NLG, including neural networks,
Transformers, and combined techniques which make
use of multiple methods.

4.2. Neural Networks (NN)

NNs have been extensively used in NLG, and
provide a strong foundation toward realistic and
meaningful NLG. In spite of the paradigm shift to-
ward Transformer-based language modelling in re-
cent years [36], NNs are still used in many NLG
applications. The most commonly used NNs are as
follows:

Recurrent Neural Network (RNN): RNNs
are designed to model sequential information – of
which text is a common example – and as such
have been commonly used in NLG. Early encoder-
decoder frameworks for NLG were generally based
on RNNs [67]. In addition, RNNs have been used in
controllable NLG, which aims to generate text with
controllable attributes, such as sentiment, formality
and politeness [46]. Apart from being utilised as a
generation method, RNNs have also been used in
the automatic evaluation of NLG models [7]. Whilst
the RNN has proven effective at modelling language,
it suffers from an inability to adequately ‘remem-
ber’ relevant information over long sequences [46].
To solve this, two variants of RNN have been pro-
posed:

• Long Short-Term Memory (LSTM):
LSTM is a form of RNN that is equipped with
an additional memory cell which allows it to
better remember information over time (and
thus handle longer text more effectively) [46].
To achieve this, LSTM utilises a series of
gates in order to dictate when pieces of in-
formation are remembered and when they are
forgotten [46]. Due to its ability to model
longer texts, LSTM has been frequently used

in NLG. Models leveraging LSTMs for NLG
evaluation have also been proposed [7]. In ad-
dition, ELMo, a popular state-of-the-art lan-
guage model, leverages BiLSTM which is a
type of LSTM. Beyond typical NLG tasks,
LSTMs have also been used for knowledge-
enhanced NLG by incorporating BiLSTM-
based keyword extraction [67].

• Gated Recurrent Unit (GRU): Like
LSTMs, GRUs are another refinement of the
RNN. GRUs are similar to LSTMs, leveraging
gating to help mitigate the problems posed by
longer sequences [46]. However, GRUs are sim-
pler in nature than LSTM, with fewer gates
and no additional memory cell [46]. This typ-
ically allows GRUs to be trained faster and
to achieve better performances than LSTMs
on smaller amounts of training data. However,
this also means that GRUs are typically less ef-
fective at handling longer sequences. Similar to
LSTMs, GRUs have seen frequent use as a gen-
eration method, and have also been proposed
as a means of evaluating NLG models [7].

Convolutional Neural Networks (CNN):
Whilst more commonly used in computer vision
tasks, CNNs have recently seen a wide area of util-
isation in NLG, from text generation to topic mod-
elling for knowledge-enhanced NLG [67]. In NLG,
CNN-based encoder-decoder frameworks have been
increasingly preferred.

Graph Neural Networks (GNN): GNNs are
neural models that capture the dependence of graphs
via message passing between the nodes of graphs.
They have the potential to combine graph represen-
tation learning and text generation. This can enable
the integration of knowledge graphs, dependency
graphs, and other graph structures into NLG [67].

4.3. Transformers

Transformers are deep learning models adopting
an attention mechanism which can provide context
for any position in the input [61]. Therefore, unlike
RNNs, Transformers do not need to process data in
order. This paves the way for greater parallelisation,
which reduces the amount of time required for train-
ing. Therefore, the Transformer architecture enables
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Figure 13: Encoder-decoder architecture of MASS [57].

models to be trained over larger corpora. As a con-
sequence of this, several state-of-the-art pre-trained
language models (PLMs) used for NLG are based
on Transformers [14, 48]. In terms of their archi-
tectures, Transformers can be categorised into three
categories:

Encoder-Only Transformers: These types of
Transformer only leverage a single Transformer en-
coder block to build a language model. The most
well-known examples are as follows:

• Bidirectional Encoder Representations
from Transformers (BERT) [14]: BERT
is a PLM developed by Google, which is used
in a wide range of NLP tasks. Moreover, it
is contextual and bidirectional, meaning that
BERT can contextualise each word in an in-
put utilising both its left and right context.
BERT has been widely adapted as an NLG
method [36] and has also seen use in the devel-
opment of metrics for NLG evaluation, such as
BERTScore, RoBERTa-STS and BLEURT [7].

• Unified pre-trained Language Model
(UniLM) [15]: UniLM, developed by Mi-
crosoft, combines multiple language model pre-
training objectives: unidirectional (both left-
to-right and right-to-left), bidirectional and
sequence-to-sequence prediction.

Decoder-Only Transformers: This type of
Transformer contains only a single Transformer de-
coder block used for language modelling.

• Generative Pre-trained Transformer
(GPT) [6]: GPT is a unidirectional auto-
regressive PLM, developed by OpenAI. It has
two successors, GPT-2 and GPT-3, which
have been trained on larger datasets and have
larger numbers of training parameters. While

all GPT versions share a similar architecture,
GPT-3 is the largest PLM with 175 billion
parameters.

• Conditional Transformer Language
Model (CTRL) [29]: CTRL is a PLM devel-
oped by Salesforce that allows users to control
generated content by providing control codes.
Control codes can be URLs, questions, or lan-
guages, and enable users to explicitly spec-
ify domains, subdomains, entities and dates.
CTRL has been trained on 50 control codes.

• XLNet [65]: XLNet is a generalised au-
toregressive pre-trained method that utilises
permutation language modelling to combine
the advantages of autoregressive and bidirec-
tional language modelling objectives. It em-
ploys Transformer-XL, an improved Trans-
former architecture, as the backbone model.

Encoder-Decoder Transformers: This corre-
sponds to the standard encoder-decoder architecture
in which there are two stacks of Transformer blocks.
The encoder is thus fed with an input sequence, and
the decoder tries to generate the output sequence
based on an encoder-decoder self-attention mecha-
nism [36].

• BART [35]: BART is a denoising autoencoder
for pre-training sequence-to-sequence models,
developed by Facebook. It combines autore-
gressive and bidirectional language modelling
objectives by using a bidirectional encoder
(e.g., BERT) and an autoregressive decoder
(e.g., GPT).

• Masked Sequence to Sequence Pre-
training for Language Generation
(MASS) [57]: MASS is a masked bidi-
rectional sequence-to-sequence pre-training
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Figure 14: Some example input-output pairs generated with T5 [49].

method for NLG, proposed by Microsoft. It
jointly trains the encoder and decoder by feed-
ing the encoder with a sentence containing a
randomly masked fragment, and using the de-
coder to try to predict the masked fragment,
as shown in Figure 13.

• Text-To-Text Transfer Transformer
(T5) [49]: T5 is a text-to-text framework
proposed by Google to reframe all NLP tasks
into a unified text-to-text format in which the
input and the output are always text strings,
rather than a class label or a span of the input.
The idea behind this proposal is to be able to
use the same model, loss function, and hyper-
parameters on any NLP task. Some example
input-output pairs can be seen in Figure 14.
While not its intended use, T5 can be adapted
for controllable NLG [46].

4.4. Combined AI Techniques
Considering the complexity of the NLG task, it is

a reasonable approach to combine multiple AI tech-
niques to be able to make use of the advantages of
each technique. Some examples of popular combined
AI techniques are mentioned below.

Plug-and-Play Language Model (PPLM) [12]:
PPLM, developed by Uber, is a language model
aimed at controlled NLG which allows users to flex-
ibly plug in small attribute models representing the
desired control objective(s) into a large, uncondi-
tional language model, e.g., GPT. The main differ-
ence between PPLM and CTRL is that PPLM does
not require any additional training or fine-tuning.

Generative Adversarial Network (GAN):
GANs contain two neural networks, a generator and
a discriminator, which compete with each other to
provide more accuracy. CNN and RNN models, as
well as their variants, are frequently used as gen-
erators and/or discriminators in GANs. Since GANs
were originally designed for generating differentiable
values, using it for discrete language generation is
not easy. However, GANs still have several appli-
cations in the context of NLG, such as poetry and
lyrics generation [55]. There exist a number of GAN
variants specialised for NLG:

• seqGAN is a sequence generation framework
aimed at solving the problems of GANs regard-
ing discrete token sequence generation, e.g.,
texts. It considers the GAN generator as a Re-
inforcement Learning (RL) agent, and the RL
reward signal is received from the GAN dis-
criminator judged on a complete sequence [66].

• I2P-GAN is a GAN-based model for auto-
matic poem generation relevant to an input im-
age. The model involves a deep coupled visual-
poetic embedding model to learn poetic repre-
sentations from images and a multi-adversarial
training procedure optimised with policy gra-
dient. In its architecture, there exists a CNN-
RNN generator that acts as an agent, and two
discriminators provide rewards to the policy
gradient [40].

• RankGAN focuses on one of the limitations
of GAN discriminators, which is that they are
generally binary classifiers. In this manner, it
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aims to improve GAN for generating high-
quality language descriptions by enabling the
discriminator to analyse and rank a collection
of human-written and machine-generated sen-
tences. RankGAN uses LSTMs for the genera-
tor and a CNN for the discriminator [39].

• MaskGAN is an actor-critic conditional GAN
which can fill in missing text according to the
surrounding context. It uses LSTMs for both
the generator and the discriminator [16].

• LeakGAN addresses the limitation of GANs

regarding long text generation, i.e., more than
20 words. Its main idea is that the discrimi-
nator leaks its extracted high-level features to
the generator in order to provide richer in-
formation. LeakGAN architecture contains a
CNN as the discriminator, and two LSTMs as
the generator. While one of the LSTMs is in
charge of obtaining leaked features from the
discriminator as the Manager, the other per-
forms the generation as the Worker, accord-
ing to the guiding goal formed by the Man-
ager [22].
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