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Editorial

In this third issue of the Digital Data Deception
(DDD) Technology Watch Newsletter, we cover de-
ception in different settings: (1) recommender sys-
tems, (2) communication (from a psychological per-
spective), and (3) cyber-physical systems.

We used a venue-based approach to select recent
papers for sections (1) and (3), and we selected chap-
ters from The Palgrave Handbook of Deceptive Com-
munication related to two parts of the book deemed
relevant. We also used a research group based ap-
proach to select recent papers from a set of five re-
search groups in the UK, active in adversarial AI.

In total 26 research papers were summarised in
this issue, all published since 2019. Four other sup-
porting papers were cited as well, when applicable.
This issue is the first to have an addendum Chi-
nese section (NL-2021-3-C) where the scope of the
DDD technology watch is extended to research pa-
pers published in Chinese; this section is available
upon request.

We hope you enjoy reading this issue. Feedback
is always welcome, and should be directed to dd-
newsletter@kent.ac.uk.
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Deception in Recommender Systems

Introduction

Recommender systems have been widely used in
many real-world applications. Since such systems use
collaborative filtering algorithms to provide recom-
mendations based on normal people’s activities as
direct input, they can be attacked by malicious users
who inject false information and deceptive data into
the system, known as “shilling attacks” in the lit-
erature [11]. It is therefore interesting to investigate
how recommender systems can be misled by false and
deceptive inputs, and how their robustness to such
inputs can be improved. In this section, we cover four
recent research papers on this topic, all published at
RecSys (ACM Recommender Systems Conference),
the top-tier conference on recommender systems in
2019 or 2020.

Attacks

Christakopoulou and Banerjee [6] proposed to
apply adversarial machine learning to automate at-
tacks on an oblivious recommender system, i.e., one
that interacts with the attacker but is oblivious to
the attacker’s existence. The attack tries to create
fake user profiles to meet two goals: (1) they are in-
distinguishable from real user profiles based on some
reasonable metrics; (2) they have a malicious intent
to affect the output of the recommender system, e.g.,
putting down the positions of the target profiles so
that they drop out of the top profiles recommended.
The first goal is to make sure that the generated
fake user profiles are not noticeable by the system
and other users, so they are deceptive. The attack

is formulated as a general-sum game between the
recommender and the attacker, each trying to min-
imise a different loss function. The generation of fake
profiles is achieved via the use of the Deep Convolu-
tional Generative Adversarial Networks (DCGANs)
architecture. In the attack, the adversary does not
have access to the gradient information of the recom-
mender, so the authors proposed a zero-order opti-
misation method to approximate the gradient infor-
mation needed. The authors conducted a wide range
of experiments under two setups: 1) the adversary
targets unrated user-item entries (i.e., candidates for
recommendation); 2) the adversary targets a small
subset of (user, item, rating) tuples gathered from
the training set of the recommender. The experimen-
tal results showed that the adversary can successfully
target a number of areas of the recommender’s out-
puts, such as top predicted items of a user, top users
of an item, a user’s hit rate, an item’s prediction er-
ror, and modelling gaps between user groups. This
paper demonstrates that more research is needed to
build recommender systems that are more robust
against such machine learning attacks.

Tang et al. [25] looked at the scenario where the
attacker uses a local surrogate model to learn how to
inject fake user behaviours that will be used to attack
the recommender system (see Figure 1 for the gen-
eral architecture of such attacks). They criticised the
“white-box” assumption of many other researchers
used for the local surrogate model, and considered
a more realistic scenario where the local surrogate
model differs from the target model so there is a
problem of attack transfer. The authors modelled theRecSys ’20, September 22–26, 2020, Virtual Event, Brazil Tang, et al.
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Figure 1: An illustration of the threat model for injection attack against recommendation models. This assumes the dataset is
available to the attacker but the target model is unknown. To achieve their malicious goals, e.g., influencing certain item(s)’
availability of being recommended, the attacker will craft fake user profiles locally with a surrogate model and inject them to
the target recommender before it is trained.

are highly correlated with each other and sometimes even self-
forming clusters [6], making them easily detectable by standard
techniques [28]. What’s more, heuristic methods heavily rely on
background knowledge, hence, a method designed for onemalicious
purpose is hard to be used for another. Finally, heuristic methods
do not directly optimize the adversarial goals, which limits their
usability and threat.

Recently, we have witnessed a huge impact of adversarial attacks
through adversarial machine learning that optimizes an adversarial
objective, irrespective of the model type and tasks [29]: In web
search, an adversary can change web contents to get high search
engine’s rankings [7]; In crowd-sourcing, an adversary can provide
useless answers for profits [30]; In social networks, an adversary
can modify node relationships for a desired node property [43]; In
image recognition, an adversary can make perturbations on image
pixels and have a wanted recognition result [17, 24].

Despite the success of adversarial learning in other domains,
there’s very sparse research on adopting adversarial learning to
attack recommender systems. In the security arms race, a limited
knowledge of the attack leads to a more dangerous state of existing
systems. In this work, we aim to revisit this direction by investigat-
ing the challenges and limitations of using adversarial learning to
attack recommender systems. In the next two sections, we will have
the same viewpoint as adversaries to understand how the attack
can be performed. After defining the threat model in Section 2, we
found that existing works do not solve the problem properly, caus-
ing the attack less powerful than it could have been. In Section 3,
we propose a more precise but less efficient solution to generate the
attack, accompanied by two efficient approximations to the solution.
In Section 4, we explore the attack’s impact on a real-world dataset
and identify its weakness and find the clues of such attacks. We
hope that these findings can help us better understand the attack
thus develop defensive techniques.

2 BACKGROUND
In this section, we first cover essential basics of the recommenda-
tion task and define the threat model. Some notations will also be
introduced to facilitate the presentation. Then we briefly revisit
existing solutions and their limitations, which encourage us to
propose a more precise approach in the next section.

2.1 Recommendation Goal
The goal of system under-attack is to recommend relevant items
to cater users’ needs. In such a system, there is a set of users
U = {u1,u2, ..,u |U |}, a set of items I = {i1, i2, .., i |I |} (e.g., prod-
ucts, videos, venues, etc.), and feedback/interaction data (e.g., user
purchased a product, watched a video, checked-in at a venue). The
feedback that users left in the system can have different types. It
can be either explicit (i.e., the user explicitly shows how she/he likes
an item, such as giving a five star rating) or implicit (i.e., a signal
implicitly reflect user’s positive preferences, such as purchasing
a product), but the later is much more prevalent than the explicit
feedback in real systems [21, 32] thus is considered in this work. We
use X ∈ {0, 1} |U |×|I | to denote the binarized implicit data, with 1
for a positive feedback and 0 for an unknown entry. A recommen-
dation model built on users’ historical data can make predictions
R ∈ R |U |×|I | . The learning objective of a recommendation model
is to provide relevant items of each user with the highest predicted
relevance scores.

2.2 Threat Model
The threat model is illustrated in Figure 1. To attack the target
recommender deployed in the system (a.k.a. victim model), the
attacker will use their own local model (a.k.a. surrogate model), to
craft fake users and inject them into the original training data of
victim model. Below, we elaborate the threat model from several
perspectives.
Attacker’s goal. The adversary’s goal can be either non-targeted,
aiming to hamper the effectiveness of the recommendation model
by forcing it to make bad recommendations, or targeted, where the
adversarywishes to increase or decrease a target item(s)’ availability
of being recommended. Similar to most other works [5, 13, 14, 25]
in literature, we mainly focus on targeted attack, which is the most
common case under recommendation context: attackers want to
influence normal users’ recommendations for profits. Specifically
to targeted attack, we consider the promote (or push) attack: given
a target item, attacker’s goal is to increase its chance of being
recommended by victim model. Alternatively, there is nuke attack,
where attackers aim to “nuke” a target item, make it less able to
get recommended. Although we don’t explicitly discuss the nuke
attack in this work, similar techniques can be used.
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Figure 1: The general architecture of the injection attack against recommender systems considered by Tang
et al. [25].
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attack as a bi-level optimisation problem, with an in-
ner objective describing consumption of injected fake
user behaviours by the local surrogate model and an
outer objective describing how the attack achieves
its goal on normal users’ predictions after the fake
data is consumed. They pointed out that past studies
had under-estimated the power of such an attack due
to less accurate estimate of gradient computation,
and studied the exact solution with two ways to cal-
culate the approximate. Using a real-world dataset
on user-venue check-ins (available at http://snap.
stanford.edu/data/loc-Gowalla.html), the au-
thors conducted experiments to show the transfer-
ability from surrogate models to different types of
target recommenders. They also discussed limita-
tions of the attack considered, including 1) the at-
tack is less effective on “cold” items and 2) the fake
user learned can still be detected by a recommender
system that is aware of such an attack. While the
results do not lead to practical attacks, they can
help inform develop defensive mechanisms against
such attacks. The authors made the source code
of their implemented attacks available at https:
//github.com/graytowne/revisit_adv_rec.

Defence against Attacks

Aktukmak et al. [1] proposed a method for de-
tecting fake user profiles that are injected to mislead
recommender systems. Their method is based on
a probabilistic matrix factorisation model that can
embed observed ratings and attributes of genuine
users into a low-dimensional space and provide use-
ful anomaly statistics for detecting new fake users.
The detection capability is based on the assumption
that a genuine user’s profile and ratings match the
statistics learned from genuine users better than fake
users because the latter often involve some random-
ness (either on the generation of the profile or the
ratings). Such mismatches over time can be captured
by a cumulative anomaly statistic, which can be used
to issue an alarm if the statistic exceeds a threshold.
Using the MovieLens 100K dataset with 943 users
and 1,682 items, the authors generated 94 fake user
profiles by mixing three well-studied attack types
(random, average and bandwagon). Comparing with

four baseline detection methods, the authors showed
that the proposed method outperformed all of them
with a significant margin in terms of the area un-
der the ROC (Receiver Operating Characteristic)
curve, as shown in Figure 2. In addition, in terms of
the detection speed, the authors showed that their
method was very efficient, comparing with an ex-
isting method known to be very efficient – the GLR
(Generalized Likelihood Ratio) detector proposed by
Li and Wang [16].

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Mehmet Aktukmak, Yasin Yilmaz, and Ismail Uysal 

4 EXPERIMENTS 
4.1 Setup 

Dataset: The experiments are performed on the Movielens 100K 
dataset, which is a popular benchmark dataset in attack detection 
studies. The dataset includes 943 users and 1682 items and pro-
vides mixed data type attributes for each user and item. The user 
attributes that are included in this study are age (real-valued), oc-
cupation (categorical) and gender (categorical). The data sparsity 
of the dataset is around 0.94. 

Atack: The ratings of the attack users are generated by mixing 
three well-studied attack types; random, average and bandwagon. 
The mixing is performed randomly at each experiment with even 
probabilities. The attack size is selected as 10%, which corresponds 
to 94 user profles. The fller size is selected according to the overall 
data density, which is 5%, corresponding to 85 items. The attributes 
of attack users are generated as follows: for each attribute, a random 
genuine user is selected and her corresponding attribute is copied. 
This procedure results in a random but realistic attribute selection 
for attack users. To form the sequential attack, 100 genuine users are 
randomly selected and held out from the training set. 5 of them are 
then randomly selected and distributed to random locations among 
the attack users. Finally, a sequence of the remaining genuine users 
followed by the attack users constitute the test set, which is called 
the mixed sequential attack. 

4.2 Detection Accuracy 
Algorithms: Four baseline algorithms NP [11], PCA [17], RDMA 

[9] and UnRAP [7] are selected to assess the detection accuracy 
of the proposed algorithm. For PCA, the mean and standard devi-
ation of each user are evaluated by imputing the missing values 
with 0 following [11], and the number of principal components are 
selected as 3. For UnRAP, r is selected as 10 [7]. 

Metric: ROC curves are evaluated to compare the performances. 
For each experiment, a mixed sequential attack was generated 
randomly and true-false positive rates were evaluated for each 
algorithm. The results in Figure 1 are obtained by conducting 50 
experiments for robust average performance. 

Results: Figure 1 demonstrates that the proposed algorithm has 
a better ROC curve compared to the baseline algorithms suggesting 
that the user attributes are utilized as an additional information 
source for detecting attacks. The intractability of designing attack 
user profles aligned with the produced ratings, in general, causes a 
mismatch between the profle and the ratings, which provides extra 
statistical anomaly evidence. The proposed detector can then draw 
upon this extra evidence to improve the detection performance 
against the compared methods. 

4.3 Detection Speed 
Algorithms: We compare the proposed detection algorithm 

with the GLR detector defned in [15]. In this model, for each item 
in the system, the changes on the parameters of the categorical 
distributions of ratings are observed and an alarm is set when the 
decision statistic of any item exceeds a certain threshold. 

Metric: The objective of sequential detectors is to minimize the 
mean detection delay (MDD) while controlling the false alarm rate 
[2]. Hence, we plot the mean detection delay of algorithms against 
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Figure 2: Comparison of MDDs for detection speed 

the logarithm of their false alarm periods. The decision threshold 
(see h in Eq. (19)) is changed to obtain diferent trade-ofs between 
the mean detection delay and the false alarm period. Similarly, 50 
experiments are performed to fnd a robust average performance. 

Results: Figure 2 shows that the proposed algorithm achieves 
quicker detection for mixed sequential attack than the GLR detector. 
Since the GLR detector uses only the ratings in the system, the 
results indicate that the proposed detector is able to exploit the 
user attributes as an additional information source to increase its 
detection performance. 

5 CONCLUSION 
We proposed an algorithm that exploits user attributes in a proba-
bilistic model to detect sequential attacks on recommender systems. 
We developed a probabilistic generative model to embed mixed-
data type user attributes along with ratings into a low dimensional 
latent space by optimizing the model parameters via EM algorithm. 
New users are projected into the latent space learned from training 
with genuine user attributes and ratings, and an anomaly statistic 
is computed in a sequential framework to detect persistent outliers. 
To show the efectiveness of the algorithm, we designed a sequen-
tial attack scenario on a real dataset in which the malicious profles 
are associated with realistic but random attributes. Initial experi-
ments on the popular benchmark Movielens dataset demonstrate 
that the proposed algorithm outperforms the baseline algorithms in 
both detection accuracy and speed which will be further confrmed 
with future extensive experiments with more sophisticated attack 
models. 

351

Figure 2: The performance of the fake user profile
detection method proposed by Aktukmak et al. [1],
compared against several state-of-the-art methods.

Chen and Li [4] looked at the robustness of
context-aware recommender systems against adver-
sarial samples. They proposed ATF (Adversarial
Tensor Factorization), a model that combines tensor
factorization and adversarial learning to improve the
robustness of context-aware recommendations. The
basic idea is that adversarial perturbations are used
to simulate attacks on model parameters, while the
model is trained in such a way to defend against such
perturbations for self-improvement. This is achieved
via a unified objective function considering both ad-
versarial perturbations and model parameters. Using
two real-world datasets, MovieLens and Last.fm each
with around 2,000 users and over 10k tags and items,
the authors showed that their proposed method out-
performed three standard tensor models in tag rec-
ommendations.
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The Palgrave Handbook of Deceptive Communication

Introduction

The Palgrave Handbook of Deceptive Communi-
cation [8] is relevant for DDD. This book was identi-
fied in our ad-hoc search for related work. In this sec-
tion of the newsletter, we cover most chapters from
two parts of the book, titled (1) “Deception Theories,
Frameworks, and Approaches”, and (2) “Detecting
Deceptive Communication”. The first chapter of the
part on detecting deceptive communication has al-
ready been covered in Issue 2 (NL-2021-2). The con-
tent of this book can inform and enable the design
and development of more effective deceptive tech-
nologies and detection techniques against them.

Deception Theories, Frameworks, and
Approaches

Powers [21] distinguished deception from error.
In particular, discursive deception was defined as the
intentional use of language to mislead, misdirect, or
misinform another person in order to induce them to
follow a flawed path of thinking, belief, or behaviour.
The author analysed situations when the sender of a
message has reason to distort the truth for their per-
sonal benefit. The conscious use of language to mis-
lead others was explored. The author admitted that
it is potentially difficult to prove a sender’s intent to
deceive. Hence, the theories discussed in the chapter
could also be applied to understanding a sender’s
linguistically induced error. The author described a
framework of concepts and principles for analysing
deceptive discursive practices that can occur at four
different levels of language, moving from the smaller
units of discursive communication to the larger ones.
The chapter looked at deception arising at the lexical
(i.e., individual word choice) level of discourse, and
explored the propositional or syntactic bases of de-
ception. The authors surveyed the speech act dimen-
sions of deceptive discursive practices. Finally, they
featured the types of deception that can arise from
the macro-semantic dimensions of discursive com-
munication such as descriptions, narratives, and ar-
gument structures. Each section introduced a small
number of principles related to a particular level as a
starting point for identifying the modes of deception
that are made possible by abusing the key principles
of language (at that level).

Markowitz and Hancock [19] pointed out that
a growing body of research suggests that language
cues for deception are not universal. The effect of
deception on word patterns varies with changes in
the context and settings. This makes it difficult to
draw conclusions about the overall impact of de-
ception on the use of language. The authors out-
lined the problems in considering a universal ap-
proach to deception and language. They considered
how research has revealed the effect of various mod-
erators (e.g., the mode of message production, the
valence of the situation) on how language is af-
fected by deception. This suggested that deception
is a context-contingent phenomenon. They also ad-
dressed how language, independent of deception, is
highly context dependent. Finally, they outlined the
Contextual Organization of Language and Deception
(COLD) framework, which proposes that psychologi-
cal dynamics (e.g., emotional and cognitive processes
modified by deception), pragmatic goals (e.g., what
the speaker is trying to accomplish with their de-
ception), and genre conventions (e.g., the norms of
each discourse community that shape how language
is produced) profoundly and systematically influence
the effect of deception on language. They applied
the COLD framework to a database of deceptive
political speeches from six US presidents (George
W. Bush, Lyndon B. Johnson, Bill Clinton, Richard
Nixon, John F. Kennedy, and Ronald Reagan), find-
ing support for the idea that false language patterns
are reliably modified by the deception type. Figure 3
summarised their findings through raw Linguistic In-
quiry and Word Count (LIWC) percentages of the
total word count.

Street et al. [24] proposed a shift towards a
theory-driven approach to lie detection research.
They explored the reasons behind truth bias and the
lie bias – the tendencies of people to believe and dis-
believe others. The adaptive lie detector theory, or
ALIED theory, recognises that these biases are adap-
tive and functional, rather than a sign of error. They
briefly reviewed recent tests of the ALIED theory.
The authors also made critical comments regarding
the troubling trend of the lack of theoretical progress
in lie detection at the moment. The practice has been
to observe effects, tag an explanation onto them, and
hold it as a theory. The authors called for a shift to-
ward theories that would be falsifiable. Predictions
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Figure 3: Evaluation of six US presidents using the COLD framework proposed by Markowitz and Han-
cock [19]. Vertical axes represent raw LIWC percentages of the total word count. Striped bars indicate
deceptive statements while solid bars indicate truthful control statements. ∗p < 0.5; ∗ ∗ ∗p < 0.001;
ϕ = p < 0.8. Error bars are standard errors.

should emerge from such a theory, which can then
be tested. To take examples from the field of astron-
omy, Newton’s theory of gravitation predicted the
existence of Uranus before we had telescopes pow-
erful enough to observe it. We have moved further
ahead from Newtonian physics to that of Einstein
through repeated falsification. Any theory changes
and shifts over time, but can maintain its core. In
doing so, it develops original predictions that should
be verified to ascertain the correctness and robust-
ness of the theory. The field of lie detection currently
lacks this ability to generate clearly defined predic-
tions that can then be ratified or falsified.

Williams and Muir [28] focused on the fact that a
crucial factor when successfully deceiving individu-
als is to make them trust that the concerned scenario
and communication are genuine. Deceivers often ma-
nipulate established norms and trust mechanisms to
help in the deception process. This chapter explored
some of the methods used by individuals to develop
trust in communication, and to signal that the pos-
itive expectations held by another individual will
be met. These included linguistic mechanisms, like

self-disclosure and verbal mimicry, and situational
mechanisms, like heuristic based strategies. The lat-
ter leads to automatic biases (such as pre-conceived
stereotypes, expectations, or emotional responses) in
decision-making or more resource-intensive, system-
atic, processing strategies. They proceeded to ex-
plore scenarios after trust has been built, when a de-
ceiver can exploit these communicative mechanisms.
They presented an initial model of trust manipu-
lation described in Figure 4 that brings all of the
above factors together to consider how elements of
communication, such as building rapport and the use
of authenticity cues, may be used to invoke trust in
order to effectively deceive others.

Carr et al. [3] noted that researchers have histori-
cally attempted to use their latest ideas and technol-
ogy to detect lies. However, such techniques were dif-
ficult to apply in the real world because the methods
and variables used were often not well defined. The
most critical question for any deception researcher
interested in designing a valid deception scenario
should be – “Does my artificial interview accurately
reflect an interview in the real world?” Such con-
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Figure 4: An initial model proposed by Williams and Muir [28] of how receiver trust may be manipulated
by deceivers.

trolled experiments are typically inaccurate in repli-
cating real situations. So, a more appropriate ques-
tion to ask would be – “How close can I get my ar-
tificial interview to reflect a real-world interview?”
Researchers should then report results and discuss
limitations when attempting to generalise those re-
sults, as they too will not often perfectly match a
real-world high-stakes interview. This chapter pro-
posed that researchers make five important consider-
ations when designing any deception study: (i) their
specific definitions of phenomena, (ii) their use of
stakes or incentives, (iii) their allowance of partici-
pants to choose to lie, (iv) their use of sanctioned or
unsanctioned lies, and (v) their appreciation of the
power of the interview process itself in generating
behaviours associated with truth or lie. They con-
cluded that researchers should approach the study of
deception in a more united, clearly defined method-
ological fashion for the betterment of our collective
scholarly knowledge and for those professionals who
rely on it.

Detecting Deceptive Communication

Sternglanz et al. [23] reviewed and synthesised
meta-analytic studies about deception detection.
The authors examined the scope, methodology, and
findings of meta-analyses on the following topics:
deception detection accuracy, moderators of accu-
racy, perceived verbal and nonverbal cues to de-
ception, actual verbal and nonverbal cues to decep-
tion, physiologically based techniques for detecting

deception (including polygraphs and brain-imaging
tools), cognitive/interrogative techniques for detect-
ing deception, and the effectiveness of training to
detect deception. They discussed meta-analytic find-
ings about deception detection techniques commonly
used by law enforcement as well as techniques used
by common people in their interpersonal interac-
tions. They also briefly discussed useful topics for
future meta-analyses about deception-related topics,
as well as methodological strengths and limitations
of meta-analyses about deception detection.

Larner [14] pointed out that previous research
into deception detection argued that deception is
more cognitively demanding than truth-telling. This
additional cognitive load can lead to changes in
linguistic and non-linguistic behaviour, which, in
turn, can be considered cues to deception. While
the majority of deception research was rooted in
Psychology, this chapter approached deception from
a linguistics perspective by proposing and empiri-
cally testing a feature of language used to manage
the cognitive demands of interpersonal communica-
tion. Formulaic sequence is an umbrella term for se-
quences of words including metaphors, clichés, col-
locations, and routine phrases. Sequences are stored
holistically as single lexical items, and this makes
the act of producing language less cognitively de-
manding. The hypothesis, therefore, was that indi-
viduals may seek to compensate for the additional
cognitive demands of lying by increasing their re-
liance on formulaic sequences. To test this assertion,
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the authors identified formulaic sequences in a cor-
pus of 1600 deceptive and truthful hotel reviews to-
talling 239,113 words. After removing non-formulaic
matches, a total of 2279 formulaic sequences were
identified across all the data. These sequences were
composed of 525 different types ranging from one
to six words. Table 5 provides examples of such se-

quences. The authors used an automated procedure
based on a specially compiled dictionary of formu-
laic sequences. The results shed light on the rela-
tionship between formulaic sequences and deceptive
language, their potential role in detecting deception,
and the generalisability of findings to other types of
texts.

N Matches Examples
1 276 okay, on-the-phone, plain-as-day, state-of-the-art
2 1260 above average, final straw, in future, no brainer
3 504 blew me away, down to earth, in my opinion, in the meantime
4 217 bump in the road, icing on the cake, spur of the moment, set my sights on
5 16 a piece of my mind, as hard as a rock, at our beck and call, bad taste in my mouth
6 6 you get what you pay for, to make a long story short, cost an arm and a leg

Figure 5: Examples of formulaic sequences identified by Larner [14], where N is the number of words
constituting a formulaic sequence, ranging from one to six.

Dianiska et al. [7] described and discussed re-
search that documents how the act of lying can in-
fluence the content of the liar’s memories of the oc-
casions when they lied and memories of the original
experience. The authors presented two types of ly-
ing – confabulations (lies that involve a person de-
scribing a specific event or experience as if it had
occurred), and false denials (lies in which a per-
son says that an event never occurred, although the
event took place). False denials require lesser effort
compared to confabulations because no new details
have to be fabricated. They also elaborated on how
an understanding of memory processes can be a tool
for uncovering deception. For instance, the content
of memories of actual and fabricated events differ
in characteristic ways, and people can be trained to
utilise these features to discriminate between them.
Furthermore, it is possible to magnify differences in
reports of liars and truth-tellers to increase detec-
tion. Therefore, memory can play a critical role in
catching liars.

Geven et al. [9] pointed out that the bodily re-
sponses of a lying individual could be very similar
to the ones of an individual who is experiencing in-
creased stress when facing a lie detection test. The
importance of avoiding wrongful incarceration leads
us to techniques detecting memory rather than lies.
The Concealed Information Test (CIT), proposed
by the authors, aimed to detect the recognition of

concealed knowledge in an interviewee by present-
ing a series of multiple-choice questions while mea-
suring several psycho-physiological (e.g., skin con-
ductance) or behavioural (e.g., reaction time) re-
sponses. When a suspect was subjected to the critical
(e.g., crime-related) items and consistently showed
distinct responses, compared to the neutral control
items, inferences were drawn. This chapter provided
an overview of memory detection using various re-
sponse measures, including research findings and the
underlying mechanisms. Available data confirmed
the validity of the CIT. However, there was quite
a gap between these laboratory studies and realistic
criminal investigations. The authors discussed possi-
ble ways to tackle challenges on the topic, including
field validity, leakage of critical information to inno-
cent suspects, and discovering intentions.

Mac Giolla and Granhag [18] raised attention
that most research on deception detection was tradi-
tionally focused on statements about the past. In this
chapter, the authors provided an overview of studies
in true and false intentions, where the focus changed
to statements about the future. A statement of true
intent refers to a future action that a speaker intends
to carry out, while a statement of false intent refers
to a future action that a speaker claims, but does
not intend to carry out. An ability to distinguish
between such statements holds great practical value
for a myriad of professions. The chapter defined key
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terms in the field, summarised the extent of research,
and highlighted recent theoretical developments and
areas for future research.

Kleinberg et al. [13] considered the problem of
detecting deceptive intent as in the last chapter, but
they formed a complementary perspective of large-
scale applications. They outlined a set of criteria that
an applied system should meet from a practitioner’s
perspective to evaluate deception theories, inter-
viewing approaches, information elicitation meth-
ods, and verbal deception cues that may be of use
for large-scale applications, such as for prospective
airport passenger screening. Their findings indicated
as promising approaches: (i) the cognition-based de-
ception theory, (ii) the information-gathering inter-
viewing approach, (iii) the unanticipated questions
method and the model statement technique, and (iv)
verbal cues, especially the verifiability of details and
stylometric cues. They concluded the chapter with

an illustration of how this combination of elements
can be put to use.

Wilson and Rule [29] reviewed the accuracy of
impressions of dispositional deceptive tendencies. In
other words, they looked at evaluation of the ac-
curacy and inaccuracy in predicting deception from
facial appearance. They pointed to research that
has recently started to address the question whether
indirect cues, such as facial appearance, can pre-
dict people’s deceptive behaviour. The answer was
unclear, and results from different domains were
mixed. The authors attempted to identify circum-
stances in which deception was accurately perceived.
They aimed to clarify distinctions between deceptive
versus non-deceptive untrustworthy behaviours that
can be detected from the face. The authors suggested
that the review they provided may foster better hy-
potheses about the specific cues that predict decep-
tive behaviour.
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Deception in Cyber-Physical Systems

Introduction

This section provides a selection of recent re-
search where deception potentially happens via
Cyber-Physical Systems (CPS). NIST (National In-
stitute of Standards and Technology, of the US’s De-
partment of Commerce) defines CPS [10] as “smart
systems that include engineered interacting net-
works of physical and computational components”.
The first sub-section covers everyday objects that
may become touchable interfaces or interactive, rais-
ing innovative opportunities for digital deception.
The second sub-section discusses papers where de-
ception may happen via wearable devices. In particu-
lar, it covers an engineered bracelet and smart shoes
available commercially which may, deceptively, be
used to obstruct microphones nearby or gather in-
telligence about a physical environment.

Deception via Physical Objects

Tejada et al. [26] presented a technique, called
AirTouch, to manufacture touch-sensitive objects us-
ing a consumer-level resin-based stereolithography
(STL) 3D printer. It leverages on principles of fluid
dynamics, i.e, the principle of continuity (the to-
tal flow of air entering and exiting an object must
be equal) and the Bernoulli’s principle (blocking
the flow of air from an outlet causes an increase
in pressure), to recognise which outlets on the sur-
face of an 3D printed object is touched; this is il-
lustrated in Figure 6. Their approach has 4 main

components: (1) an object (e.g., an interactive an-
imal) built with a 3D printer containing outlets,
i.e., air passage holes, of specific diameter on its
surface; (2) an internal structure (including a flow-
distribution chamber connected to cylindrical tubes
linked to outlets) built inside the object also using
3D printer; (3) a setup to connect an air compres-
sor tubing to valves, and a barometric sensor to
the object (air pressure is generated using an Ar-
duino board); and (4) software for recognition of
touch events and identification of corresponding out-
let. The design of the 3D components (a) and (b) are
facilitated by an Autodesk Meshmixer script. The
feasibility of their approach for recognition of touch
was evaluated for AirTouch-enabled objects of differ-
ent shapes and outlet configurations: an interactive
bar chart (example of data physicalization), an in-
teractive animal, a grasp-sensing sphere, and a color
hue selector. The authors trained a Support Vector
Machine (SVM) model with a Radial Basis Function
(RBF) kernel using 1000 samples to classify results of
touch events. The lowest accuracy was obtained for
the “grasp-sensing sphere” (91.6%), and the highest
was obtained for the “interactive animal” (100%).
A couple of limitations were discussed of this early
stage proposal to turn static objects into interactive
ones, such as the need for an air compressor powering
the 3D objects. However, as this field progresses and
more sophisticated interactions are achieved, decep-
tive objects can start collecting and processing data.

Iravantchi et al. [12] proposed a digital ventril-

Figure 6: The AirTouch technique proposed by Tejada et al. [26] relies on fluid dynamics for touch recog-
nition; (a) shows a flow-distribution chamber built inside a 3D printer generated object, and 3 outlets (i.e.,
holes on the object surface) of different diameters but same configuration; (b) and (c) show different outlets
being pressed causing different barometric pressure responses.

© 2020 University of Kent, UK Page 11



oquism prototype to enhance ordinary inanimate
objects, located within the same environment as a
smart speaker, with the ability to render sound and
give the illusion that they can interact with humans.
This approach allows, e.g., a plant to remind people
to water it, or a picture frame to tell stories related
to the occasion depicted. The prototype leverages
from “directed ultrasonic beams that, when modu-
lated with an input signal, are inaudible in flight
and demodulate when striking a surface, allowing
the sound to emanate from the target rather than
the speaker itself”. A number of non-expensive com-
ponents were used to build the prototype, as shown
in Figure 7, and the pre-trained YOLO (v3) algo-
rithm was used for real-time object detection and
bounding. The authors reported on 3 types of ex-
periments and studies to inform and validate their
approach. The first type involved physical studies
to understand the effect of different materials and
geometry of objects in relation to the sound emana-
tion scheme. The second type was a real objects study
where the authors tested the reflected acoustic power
of their ventriloquism scheme using different angles
and distances between the speaker and 24 objects
typically found in an office, domestic, workshop and
outdoor environments (without any mechanism in
place to control “normal” background noise). Over-
all, they noticed that, although larger objects out-
performed (e.g., dishwasher), objects with complex
geometry and asymmetries performed well on an off-
angle setup such as 90◦ or −90◦ (e.g., plant pot). In
all cases, however, the sound remained intelligible.
The third type was a user study with 5 participants
aimed at testing recognition of the “talking” object
and its conveyed message in the office, domestic and
workshop environments again. Results indicated a
high degree of correct localisation (92%) and com-
prehensibility (100%). The main limitations of the
implemented prototype are: ultrasound cannot pass
through walls and large objects, therefore, the ven-
triloquism illusion is disturbed if a user walks past
the ultrasound beam; objects made of absorptive ma-
terials do not reflect sound well; the generated sound
operates at a frequency which does not sound as
natural as typical speakers do (such as Amazon’s
Alexa); and the apparatus used to direct the ultra-
sound beam is cumbersome and alternatives would
blend better into the environments studied and re-
mains as future work.

Figure 7: Components of the Digital Ventroloquism
prototype proposed by Iravantchi et al. [12]: (A)
Driver Board, (B) Small Speaker Array, (C) Large
Speaker Array, (D) Raspberry Pi Microphone Array,
and (E) Webcam.

Deception via Wearable

Chen et al. [5] leveraged from the fact that we
are surrounded by devices with microphone capa-
bilities potentially able to listen and record con-
versations (e.g., smartphones, voice assisted smart
speakers, and smartwatches) due to default features,
misconfiguration or misuse by attackers. To counter
this threat, the authors proposed a bracelet-like ul-
trasound jammer (as illustrated in Figure 9) to
make conversations incomprehensible to surround-
ing (smart) devices, therefore protecting users’ pri-
vacy and security while not disturbing them since
this technology is inaudible to humans. The self-
contained wearable jammer prototype has been cre-
ated using a 3D printer model of the bracelet, which
can be turned on/off, and the following compo-
nents: ultrasonic transducers, a signal generator, a
microcontroller, a battery, a voltage regulator and
a 3W audio amplifier. A number of experiments
and Matlab simulations to inform the jammer de-
sign were conducted. Results evaluating the wear-
able jammer, against a planar jammer (proposed
in the literature) and the i4 jammer (according to
the authors, available at Amazom.com), indicated
that the prototype outperforms (1) in angular cov-
erage, (2) in mitigating blind spots, (3) in jamming
effectiveness (measured in terms of Word Error Rate
(WER) for the transcribed speech), and (4) in with-
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standing noise cancellation attacks. The authors also
validated how the bracelet jammer would perform
against hidden microphones, covered by different
materials; results showed that its performance re-
mains unaffected by materials such as paper tissue,
paper sheet, foam windshield and cloth (WER of
99%), but is highly affected by materials such as
plastic box and cardboard box (WER 41.01% and
46.76%, respectively). A “user study” with 12 partic-
ipants, and 4 smartphones was also conducted. Over-
all, it indicated a positive perception of the bracelet
by users as a mechanism to protect their privacy
(M = 5.4; SD = 1.1), and the perception that it
would be useful in the context of sensitive conver-
sations although very noticeable. However, the au-
thors noted that their results are not easily gener-
alisable to different types of smart devices in the
environment, and the bracelet may cause undesir-
able side-effects like jamming the user’s own smart-
phone, hearing aid devices, and emergency response
devices. The simulation source code, hardware de-
sign, firmware and schematics to allow replication
of results is available at https://github.com/y-x-
c/wearable-microphone-jamming.

Figure 9: Illustration of the wearable ultrasound
jammer designed by Chen et al. [5].

Yu and Nahrstedt [30] explored the possibility
of an attacker exploiting “foot force data” collected
by smart shoes, usually uploaded by users to cloud
servers for statistical analysis, to reconstruct the cor-
ridors layout of a building and locate the building on
a map (such as Google Map). Therefore, the authors
proposed an attack in the context of a potential vic-
tim being tracked and, ultimately, physically located
inside the building by an attacker (if the foot force
data is available in real time). To demonstrate the
feasibility of such an attack, the paper proposed the
ShoesHacker prototype system which leverages from
5 main stages with a number of tasks, as illustrated
in the system’s architecture in Figure 8. The “walk-
ing path estimator” and the “corridor map estima-
tor” stages use Support Vector Machine (SVM) clas-
sifiers to extract features from footsteps and deter-
mine direction changes; 5 algorithms were also pre-
sented to achieve some tasks scattered across the 5
stages. The prototype was evaluated with the help of
10 volunteers, with different heights and weights, us-
ing the smart shoes called “ReTiSense Stridalyzer”
which contains 8 foot force sensors transmitting data
to a phone via Bluetooth. Several settings were used
to evaluate the performance of (1) Stair Landing De-
tection, (2) Angle Regression, (3) Walking Path Es-
timator, (4) Corridor Map Estimator, and (5) Build-
ing Recognizer. Limitations were discussed such as
the assumption of typical office buildings with 90◦

angled corridors and squared staircases. Other types
of staircase, such as spiral ones, would result in in-
accurate direction (U-turn) labels extracted from
the training data, and irregular corridor structures
would result in inaccurate angle regression. Also, the
use of elevators is currently not handled by the sys-
tem. Nevertheless, this paper showed the potential
of leveraging data from smart shoes for deceptive
purposes via valuable intelligence gathered simply
by walking through an indoor space.

Figure 8: Architecture of the ShoesHacker prototype system proposed by Yu and Nahrstedt [30].
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Selected Adversarial AI Research Groups in the UK

Introduction

This section provides information about a num-
ber of research groups in the UK, having a strong
interest in Adversarial AI. The selected groups have
been chosen according to their strength and recent
activities, i.e., recent publications.

Security Group, University of Cambridge

The Security Group at the University of Cam-
bridge (https://www.cl.cam.ac.uk/research/
security/) is a world leading research group fo-
cusing on security engineering and hosts the world-
renowned cyber security researcher Professor Ross
Anderson (https://www.cl.cam.ac.uk/~rja14/).
They recently have published the following two pa-
pers on adversarial AI.

Shumailov et al. [22] introduced a system they
designed to block the transfer of adversarial sam-
ples, which was called Sitatapatra. The idea be-
hind the system was that adversarial samples are
portable, meaning that the devices using the same
CNN are vulnerable against the same adversarial
samples. Therefore, to avoid the transferability of ad-
versarial samples, the authors were inspired by cryp-
tography and introduced a notion of key into Convo-
lutional Neural Networks (CNNs) that causes each
network of the same architecture to be internally dif-
ferent enough. As shown in Figure 10, each convo-
lutional layer with Rectified Linear Unit (ReLU) ac-
tivation is sequentially extended with a guard layer
(Figure 10b) and a detector (Figure 10a). Intuitively,
the guard encourages the gradient to disperse among

differently initialised models, limiting sample trans-
ferability. If this fails, the detector works as our sec-
ond line of defence by raising an alarm at potentially
adversarial samples. The authors described multiple
ways of embedding the keys and evaluated them us-
ing the MNIST and CIFAR10 datasets. Based on
these data, they proposed a scheme to select keys.
The proposed system is capable of tracing the de-
tected adversarial samples back to the individual de-
vice which was used to develop the samples, accord-
ing to the authors. In addition, the authors claimed
that Sitatapatra can be used on constrained systems
due to its minimal run-time overheads (0.6-7%).

Van der Zee et al. [27] investigated whether full
body motion can be a signal for detecting deception.
Therefore, rather than focusing on specific gestures
such as fidgeting and gaze aversion, they examined
the effectiveness of detecting deception from a full
body motion which includes position, velocity, and
orientation of 23 points in the subject’s body. For the
experiments, the authors recruited 60 South Asian
and 30 White British interviewees and asked them
to either tell the truth or a lie regarding two spe-
cific tasks. Then, they measured the participants’
full body movements by using Xsens MVN motion
capture suits, as shown in Figure 11. The results of
the experiments showed that full body motion, i.e.
the sum of joint displacements, was indicative of ly-
ing 74.4% (truths: 80.0%, lies: 68.9%). Further anal-
yses indicated that including individual limb data
in our full body motion measurements can increase
its discriminatory power to 82.2% (truths: 88.9%,
lies: 75.6%). Furthermore, the authors reported that
movement was guilt- and penitential-related, and oc-

Figure 10: High-level view of the module extensions, proposed by Shumailov et al. [22], and added to CNNs
to stop and detect transferred adversarial samples.
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curred independently of anxiety, cognitive load, and
cultural background. Regarding the investigation on
cultural background, they also noted that the par-
ticipants they tested did not differ enough from a
cultural perspective to elicit distinctive behavioural
patterns since all participants were students or em-
ployees of Lancaster University which means that,
while South Asian participants were born and raised
in South Asian countries, they have also spent a sig-
nificant amount of time in the UK. Other than that,
this study provides quite promising results on de-
tecting deception.

Figure 11: Illustration of absolute measure for full
body motion in the study by Van der Zee et al. [27].
The figure shows two poses in shades of blue with the
distance between pairs of joints indicated by dashed
red lines.

Systems Security Research Lab (S2Lab),
King’s College London

The S2Lab (https://s2lab.kcl.ac.uk/) is
part of the Cybersecurity group of the Department
of Informatics at King’s College London. The lab
works at the intersection of program analysis and
machine learning for systems security, and more re-
cently on adversarial AI. The lead of the lab is Pro-
fessor Lorenzo Cavallaro (https://kclpure.kcl.
ac.uk/portal/lorenzo.cavallaro.html). One re-
cent paper on adversarial AI from this lab is sum-
marised below.

Pierazzi et al. [20] focused on test-time evasion
attacks in the so-called problem space, where the
challenge lies in modifying real input-space objects
that correspond to an adversarial feature vector.

The authors proposed a formalisation of problem-
space attacks, which lays the foundation for iden-
tifying key requirements and commonalities among
different domains. They identified four major cate-
gories of constraints to be defined at design time,
including (1) which problem-space transformations
are available to be performed automatically while
looking for an adversarial variant; (2) which object
semantics must be preserved between the original
and its adversarial variant; (3) which non-ML pre-
processing the attack should be robust to (e.g., im-
age compression and code pruning); and (4) how to
ensure that the generated object is a plausible mem-
ber of the input distribution, especially upon man-
ual inspection. Building on their formalisation, the
authors proposed a problem-space attack for the An-
droid malware domain which they claimed to over-
come the limitations of existing attacks. To evaluate
the effectiveness of the proposed attack, they imple-
mented a prototype, available on request (https://
s2lab.kcl.ac.uk/projects/intriguing). The au-
thors used the DREBIN classifier, based on a bi-
nary feature space and a linear SVM, and its hard-
ened variant, Sec-SVM, which requires the attacker
to modify more features to perform an evasion. The
experiments used a dataset with 170K Android apps
from 2017 and 2018, collected from AndroZoo. Re-
sults of the experiments showed that thousands of
realistic and inconspicuous adversarial applications
can be automatically generated at scale, where it
takes often less than two minutes to generate an ad-
versarial app. Since the authors shared their codes
and the data, further research on defence in the prob-
lem space can be conducted by making use of the
resources provided by the authors.

Intelligent Systems Lab, University of
Oxford

The Intelligent Systems Lab (http://www.
cs.ox.ac.uk/people/thomas.lukasiewicz/isg-
index.html) directed by Professor Thomas
Lukasiewicz (https://www.cs.ox.ac.uk/people/
thomas.lukasiewicz/) is part of the Artificial In-
telligence and Machine Learning theme of the De-
partment of Computer Science at the University of
Oxford. They have been working on adversarial AI
recently. One selected paper is summarised below.

Li et al. [15] proposed a lightweight generative
adversarial network for efficient image manipula-
tion using natural language descriptions; examples of
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Figure 12: Examples of image manipulation using natural language descriptions from the study by Li
et al. [15]. “ManiGAN*” denotes the baseline model for which the authors reduced the number of stages
and parameters.

which are shown in Figure 12. More precisely, the au-
thors aimed to semantically modify parts of an image
(e.g., colour, texture, and global style) according to
user-provided text descriptions, where the descrip-
tions contain desired visual attributes that the mod-
ified image should have. They also presented a word-
level discriminator to fully explore the information
contained in text features and build an effective inde-
pendent relation between each visual attribute and
the corresponding semantic word. The lightweight
generator in the system, on the other hand, contains
a text encoder, which is a pre-trained bidirectional
Recurrent Neural Network (RNN), and two image
encoders, which are pre-trained using the Inception-
v3 and VGG-16 networks, respectively. The authors
evaluated their system using the CUB bird dataset
which contains 8,855 training images, 2,933 test im-
ages and 10 text descriptions per image, and the
COCO dataset which contains 82,783 training im-
ages, 40,504 validation images and 5 text descrip-
tions per image. For the evaluation of the system,
the authors adopted the Fréchet Inception Distance
(FID) as a quantitative measure. Moreover, they
conducted a user study in which, for each dataset,
they randomly selected 30 images with randomly
chosen descriptions. Then, they asked participants to
compare two results after looking at the input image,
given text and outputs based on accuracy and real-
ism. The 1380 results obtained from 23 participants

returned accuracy rates of 65.94% and 77.97%, and
realism rates of 57.82% and 67.53% for CUB bird
and COCO datasets, respectively. In addition, FID
was reported to be lower than the existing ManiGAN
solution for both datasets, which is better. The au-
thors shared their codes publicly (https://github.
com/mrlibw/Lightweight-Manipulation) for fur-
ther research.

Airbus Centre of Excellence in Cyber
Security Analytics, Cardiff University

This centre (https://www.cardiff.ac.uk/
research/explore/research-units/airbus-
centre-of-excellence-in-cyber-security-
analytics) was founded as a result of a collabo-
ration between the Cardiff University and Airbus.
It covers areas of mutual interest to the Cyber Op-
erations team at Airbus and the Cardiff University,
including data science, big data analytics and AI.
The centre mainly focuses on the interpretation and
effective communication of applied data science and
AI methods through interdisciplinary insights into
cyber risk, threat intelligence, attack detection and
situational awareness. The Director of the centre
is Professor Pete Burnap (https://www.cardiff.
ac.uk/people/view/44219-burnap-pete). One re-
cent paper this centre published on adversarial AI
is summarised below.
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Anthi et al. [2] investigated how adversarial
learning can be used to target supervised models in
the context of Industrial Control Systems (ICS). In
such context, they used the Jacobian-based Saliency
Map Attack (JSMA) to generate adversarial samples
and explored classification behaviours of the target
models. The authors investigated how such samples
can support the robustness of supervised models us-
ing adversarial learning by including a random sam-
ple of 20% of the generated adversarial data points in
the original training dataset and retraining the mod-
els. For the experiments, a power system dataset was
used that consisted of 55,663 malicious and 22,714
benign data points. It was constructed by using the
power system framework implemented by Mississippi
State University and Oak Ridge National Labora-
tory. Results showed that the classification perfor-
mance of the Random Forest (RF) and J48 classi-
fiers decreased by 16% and 20%, respectively, when
adversarial samples were present. In addition, when
the models were retrained after adding the adversar-
ial samples to the training data, the RF model had
a higher classification performance compared to the
J48 model, which means the former is a more robust
model towards classifying adversarial samples for all
combinations of the JSMA parameters on the given
dataset, according to the authors.

Artificial Intelligence Network, Imperial
College London

The Artificial Intelligence Network (https://

www.imperial.ac.uk/artificial-intelligence)
spans all faculties of Imperial College London, from
Engineering and Natural Sciences to Medicine and
the Business School with over 200 academics working
in the area of AI. The network covers all AI-related
research activity within Imperial College London,
including several AI-related research groups and
Centres of Doctoral Training. One recent paper on
adversarial AI from this network is summarised be-
low.

Liu and Lomuscio [17] introduced a black-box ad-
versarial training algorithm, called MRobust, lever-
aging from the Scale Invariant Feature Transform
(SIFT) algorithm. The proposed algorithm used
Monte-Carlo Tree Search (MCTS) to generate ad-
versarial examples for adversarial training. Given an
arbitrary input to a Deep Neural Network (DNN),
MRobust searches small regions around the input
that have significant potential to generate adversar-
ial samples. The authors stated that the algorithm
does not require access to the internal layers of the
DNN, and thus falls in the realm of a black-box ad-
versarial attack. The authors evaluated MRobust on
the MNIST and CIFAR10 datasets. By comparing
against Fast Gradient Sign Method (FGSM) and
Projected Gradient Descent (PGD) adversarial at-
tack methods, the results showed that the resulting
DNNs synthesised via the proposed method are less
susceptible to attack transferability. Furthermore,
the authors showed that the proposed method signif-
icantly reduced the number of adversarial examples
required for adversarial training.
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