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A. Background of research field

• In recent years, the combination of machine learning models and big data analytics techniques 
has led to significant advancements in healthcare, clinical decision support, and other fields by 
harnessing the potential of massive healthcare data for new research insights. 

• However, machine learning algorithms also face potential risks of privacy leackage and are 
vulnerable to various attacks 



B. The main attack methods in multi-party data sharing

• Four methods: 
Membership Inference Attack(MIA), Model Inversion, Attribute Inference and Model Extraction

• These attacks primarily target training data and model parameters with the goal of extracting 
sensitive information. These attacks can be conducted individually or in combination, posing varying 
degrees of threats to privacy.

[1] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership inference attacks against machine learning models. In IEEE S&P, 2017.
[2] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit confidence information and basic countermeasures. In ACM CCS, 2015.
[3] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov. Property Inference Attacks on Fully Connected Neural Networks using Permutation Invariant Representations. In CCS, 2018.
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B. Methods for privacy protection in multi-party data sharing

• these methods: Data anonymization techniques, Adding differential privacy to model parameters and 
Third-party differential privacy(such as PATE).

• These methods provide means for privacy protection, but there are still issues that need further 
exploration in achieving the optimal balance between security and utility.



C. Research Objectives: some specific algorithms

• differential privacy, the mathematical definition and computation methods of moments 
accountant, and the privacy computation methods using random response for binary and 
multi-class classification.

• the specific implementation method of parameter-based transfer learning.

[1] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, pages 1–12, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
[3] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications 

Security, pages 308–318. ACM, 2016.
[4] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10):1345–1359, 2009.
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C. RRML: Teacher Consensus Aggregation Learning Mechanism based on 
Randomized Response Differential Privacy

• Challeges:  The main problem with the PATE framework is:  (1) Trusted third party 
requirement. (2)Decreased accuracy with more teacher models.

• Potential solutions:  the RRML algorithm: (1) Localized noise addition using randomized 
response differential privacy. (2)Improved performance under low budget constraints.

[1] N. Papernot, I. Goodfellow, M. Abadi, K. Talwar, and Ú. Erlingsson: Semi-supervised knowledge transfer for deep learning from private training data. ICLR, 2017.
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C. Steps of the RRML algorithm

• Partition the data and train multiple teacher models.
• Apply local random response perturbation to the 

teacher models' outputs.
• Calculate the unbiased estimator of the perturbed 

labels.
• Determine the estimated labels corresponding to 

queries.
• Train a student model to achieve privacy-preserving 

machine learning. 



C. RRML:  “Utility of the RRML algorithm on MNIST and SVHN datasets”

Utility of the RRML algorithm on MNIST and SVHN datasets:
• The RRML framework achieves privacy protection while minimizing accuracy loss.
• Increasing the perturbation probability reduces the privacy budget and enhances privacy protection.



C. RRML:  “Performance comparison between RRML and other privacy 
frameworks under equivalent conditions”

Performance comparison between RRML and other privacy frameworks under equivalent conditions:
• The proposed RRML framework shows significantly better privacy-utility trade-off compared to other 

frameworks.



C. RRML: “Comparison of model accuracy loss based on RRML and PATE on 
the COVID-CT dataset”

Comparison of model accuracy loss based on RRML and PATE on the COVID-CT dataset:
• The RRML framework exhibits smaller accuracy loss than PATE, particularly when the epsilon value is small.
• RRML is more suitable for cases with stricter privacy requirements.



C. RRML:  “Statistical utility of adding Laplace noise and random response 
perturbation to the COVID-CT dataset”

Statistical utility of adding Laplace noise and random response perturbation to the COVID-CT dataset:
• As the number of teacher models increases, correct prediction count gradually decreases due to limited training data.
• Random response perturbation performs better than noise methods, especially with a small number of teacher models.
• Noise methods require a sufficient number of teacher models for strict privacy protection, and inadequate training data 

may significantly reduce overall utility.



C.  RRMTL: Application of RRML in Transfer Learning

Traditional transfer learning vulnerabilities: 
• Challenge: (1) Model inversion attacks and membership inference attacks exploit the sharing of source domain 

model parameters to reverse-recover training data information.
Introduction of differential privacy protection in RRMTL:
• Solution: RRMTL incorporates the differential privacy protection mechanism from RRML to effectively prevent 

privacy leakage.
• Improving transfer learning effectiveness with FOA: FOA (feature optimization algorithm) is proposed to enhance 

transfer learning by selecting more similar features based on the similarity between the source and target domain 
features.



C.  The basic architecture of RRMTL

• Train a privacy-protected student model using RRML in the source domain, then transfer the 
student model as a pre-trained model to the target domain. 

• This avoids direct sharing of source domain data and provides privacy protection.



C.  RRMTL: “Testing accuracy of RRML algorithm on hypertension data”

Testing accuracy of RRML algorithm on hypertension data:
• The accuracy of the RRML algorithm on hypertension data improves when the number of teacher models is 

appropriately set.



C.  RRMTL: “Performance comparison between RRML and PATE-G”

Performance comparison between RRML and PATE-G:
• RRML outperforms PATE-G in terms of high-level data utility, especially with a small privacy budget.
• PATE-G uses Laplace noise for perturbing voting results, while RRML employs the random response technique 

as the perturbation mechanism.



C.  RRMTL: “Effectiveness of FOA in transfer learning”

Effectiveness of FOA in transfer learning:
• Applying FOA to transfer learning leads to significant performance improvements in accuracy, precision, 

recall, and other metrics compared to direct transfer.

Performance 
Metrics Accuracy Precision Recall F-Score AUC

Non-transfer 0.732 0.695 0.804 0.762 0.759

Direct transfer 0.723 0.709 0.758 0.732 0.774

Non-transfer (FOA) 0.728 0.69 0.83 0.753 0.738

Transfer after FOA 0.805 0.75 0.842 0.797 0.812



C.  RRMTL: “Performance of stroke risk prediction model based on RRMTL”

Performance of stroke risk prediction model based on RRMTL:
• The RRMTL-based stroke risk prediction model achieves a better balance between data privacy and utility.

Scenario Accuracy Precision Recall F-Score AUC

Non-transfer 0.728 0.69 0.83 0.753 0.738

RRMTL（n=5) 0.749 0.722 0.81 0.763 0.797

RRMTL（n=50) 0.788 0.745 0.876 0.805 0.818

RRMTL（n=100) 0.77 0.74 0.822 0.781 0.794



D.  Conclusion

RRML and RRMTL mechanisms for privacy protection:
• Proposed to address privacy leakage in machine learning and transfer learning.
• RRML uses random response mechanism for better classification performance with privacy 

preservation.
• RRMTL applies RRML to transfer learning, ensuring local differential privacy in data fusion and 

knowledge transfer.
• Successfully validated the effectiveness of RRMTL in stroke risk prediction tasks.
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