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Privacy on the Internet

Think you’re anonymous online?

& Attacker

Client Node

Network Sniffer Internet Service Autonomous System
Provider

Attack vectors sniffing traffic b/w client and guard node in Tor
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Introduction WHAT?

Open source
S/W bundled
with browser

WHY?

Enables | Encryption
anonymity online layers

The Onion Router.

common belief: internet users should have private access to an uncensored web.

Tor +dinstrumental to Snowden's whistleblowing 2013, at that time, Tor could not be cracked.
PET: Privacy Enhancing Technologies

TOR : The Onion Router is a PET

. 8 million users each day.
* 6500 relays around the world.
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Background

=> Using Tor, criminals keep their activities secret from
law enforcement authorities

=> Challenges in PET traffic classification
¢ Streaming platforms
¢ V/R apps
¢ ToT devices from heterogeneous data sources
¢ Encrypted traffic

Motivation

=> Valuable insights via classification
¢ TIdentify malicious activity and enhance security
¢ Optimize resource allocation and hence network performance



Problem Statement

=> To identify the applications visited by the Tor user using
different classification algorithms based on machine learning

=> Assumption that different types of application’s traffic have
different time constraints, allowing us to characterize the
traffic being routed through a Tor node

=> By classifying the Tor network traffic into different
applications, we will be able to downgrade user’s privacy to
some extent by exposing their activity within Tor.

Objective

=> Expose vulnerability of Tor by implementing traffic

fingerprinting attack, thereby, classifying traffic into
application type



Dataset

Unbalanced Raw Dataset.

.csv file with 3361 rows and 23 columns.
8 different categories of

applications.
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https://unb.ca/cic/datasets/tor.html

Dataset ~ Application classes

1. Browser ‘, ¢

2. Chat ﬁ

3. VolIP

4. File transferﬁm




Dataset ~ Temporal Features from Tor Traffic

e Forward Inter Arrival Time(fiat): It is the time between two packets sent in forward direction.
e Backward Inter Arrival Time(biat):It is the time between two packets sent in backward direction.
e Flow Inter Arrival Time(flowiat): It is the time between two packets sent in either direction.

e Active Time(active): It is the amount of time a flow was active before going idle.

e Idle Time(idle): It is the amount of time a flow was idle before becoming active.

e Flow Bytes per second(flowBytesPerSecond): It is the number of bytes flown per second.

e Flow packets per second(flowPacketsPerSecond): It is the number of packets flown per second

e Duration of flow(duration): It 1is the total time duration of the flow.

We take the minimum, maximum, standard deviation and mean value of fiat, biat, flowiat, active and

idle as the features.



Experimental setup

-> Dataset : ISCXTor2016 (Temporal data) 3361 rows, 23 columns

-> Wh@nix OS routes the traffic through Tor

ISCXFlowmeter

01101100
01101111
01110110
01100101

(reduced # features ~ 23)

16 GB RAM

CORE'i7 |/
| 9th Gen :
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Traffic fingerprinting attack on Tor

Tor
Pcap

Gateway

—

Regular
Pcap

Workstation

Virtual Box
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Tor user connecting to a website through three proxy servers

D Relay Node * @ »
) , Exit Node
Guard Node
g Website

ﬂ > static analysis of n/w traffic

Which
Tor-Iser - Applications?
m ________ — Unencrypted Link

/ Attacker

on——

oo Database of

oo = Applications and
= their features

= Encrypted Link




Methodology

Feature Selection
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Methodology

Output

Tor Traffic
Application
Type
Predicted

Correlation
—» feature |— Model 1
selection
Each Feature Choosing the feature
Mutual selection algo is set and classifier
. applied with ML combination which
Information | Model 2 classifier gives best result
Feature
Selection lyin %
ADR‘yL g N Training Proposed
] o Model Model
Sequential Classifiers
> Feature |[— Model 3 L
Selecion Testing on the
trained model
Feature
Training Data Pre- Selection by | | Model 4 Test
Data processing Tree data
Importance Sequential
v Feature =~ |—— Model 5
Class Selection
Data Balancing
A Ll A
Cleaning using
SMOTE Auto-
| —— Model 6
& 53 encoders
Removal of

Complete Case
Analysis

Missing Values
Imputation

constant, quasi
constant and
duplicate
features

Precision,
Recall,
accuracy, f1
score

Decision tree

Logistic regression
Support Vector Machine
K-nearest neighbour
Random Forest

AdaBoost

XGBoost Ensemble

Model 1-5 used traditional methods for feature selection. However, model 6 used multilayer perceptron autoencoder for feature selection. 14



Evaluation metrics

Metric 11 [2] [3] Our Proposed Model
Precision 0.87 N/A 0.84 0.96

Recall N/A N/A 0.85 0.95
F1-Score N/A 0.95 N/A 0.95
Accuracy N/A 95.6% N/A 95.75%
Reference:

1. Lashkari, A.H., Draper-Gil, G., Mamun, M.S.I., Ghorbani, A.A.: Characterization of tor traffic using time-based features. In: ICISSP, pp. 253262 (2004)

2. Xu, J., Wang, J., Qi, Q., Sun, H., He, B.: Deep neural networks for application awareness in sdnbased network. In: 28th International Workshop on
Machine Learning for Signal Processing (MLSP), pp. 1-6. IEEE (2018)

3. Sarkar, D., Vinod, P., Yerima, S.Y.: Detection of tor traffic using deep learning. In: IEEE/ACS 17th International Conference on Computer Systems and
Applications (AICCSA), pp. 1-8. IEEE (2020)

Random forest with SMOTE gives best accuracy (95.75%)



Comparative evaluation

Research Work Feature Class Hyperparameter | Accuracy | Precision Recall F1-Score
Selection Balancing Tuning
[1]
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2
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3]
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Our Work o Q 0 0 0 ° Q

0.15 % improvement 1in accuracy over state-of-the-art on given dataset



Scope

1. Compromising the anonymity of Tor user by enabling traffic
classification attack.
2. Supervised Machine Learning/Classification Algorithms
Random Forest, XGBoost, AdaBoost, Decision Tree, K-Nearest, Neighbour,
Logistic Regression and Support Vector Machine
3. Feature Selection Algorithms
Correlation Feature Selection, Mutual Information, Sequential Feature
Selection (Step Forward), Tree Importance and Multi-layer Perceptron
Autoencoders
4. Using Time Related Features
focus on temporal statistics of traffic only, as our feature set.
5. Comparative analysis with SOTA
in terms of accuracy, precision, recall and F-1 score 17



Conclusion and Future Work

->

Analysed that by using time characteristics alone we can classify Tor
traffic into different applications like Chat, VoIP, FTP,
Video-Streaming, Audio-Streaming, Email, Browsing and P2P.

Class balancing by SMOTE significantly improved the accuracy of Model
3 by 7.46% and gave best performing proposed model: Model 5

Model 5 outperformed the models in prior research work by 0.15% 1in
terms of accuracy using the same dataset

Used Multi layer perceptron autoencoder for traffic classification
and inferred that they are not very effective in classifying Tor 31.
traffic accurately.
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“Those who are motivated only by the desire for the fruits of action are miserable, for they
are constantly anxious about the results of what they do” The Bhagwad Gita

Thank you.
Queries and suggestions are welcome.

Reach out : niyatibaliyan@nitkkr.ac.in
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